JavaScript Reference

December 12, 1997

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software programs
offered by Netscape (referred to herein as "Netscape Software") and related documentation. Use of the Netscape Software is
governed by the license agreement accompanying such Netscape Software. The Netscape Software source code is a
confidential trade secret of Netscape and you may not attempt to decipher or decompile Netscape Software or knowingly allow
others to do so. Information necessary to achieve the interoperability of the Netscape Software with other programs may be
obtained from Netscape upon request. Netscape Software and its documentation may not be sublicensed and may not be
transferred without the prior written consent of Netscape.

Your right to copy Netscape Software and this documentation is limited by copyright law. Making unauthorized copies,
adaptations, or compilation works (except for archival purposes or as an essential step in the utilization of the program in
conjunction with certain equipment) is prohibited and constitutes a punishable violation of the law.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL
NETSCAPE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA,
INTERRUPTION OF BUSINESS, OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF
ANY KIND, ARISING FROM ANY ERROR IN THIS DOCUMENTATION.

Netscape may revise this documentation from time to time without notice.
Copyright © 1995-97 Netscape Communications Corporation. All rights reserved.

Netscape Communications, the Netscape Communications logo, Netscape, and Netscape News Server are trademarks of
Netscape Communications Corporation. The Netscape Software includes software developed by Rich Salz, and security
software from RSA Data Security, Inc. Copyright © 1994, 1995 RSA Data Security, Inc. All rights reserved. Other product or
brand names are trademarks or registered trademarks of their respective companies.

Any provision of Netscape Software to the U.S. Government is with "Restricted rights" as follows: Use, duplication or
disclosure by the Government is subject to restrictions set forth in subparagraphs (a) through (d) of the Commercial Computer
Restricted Rights clause at FAR 52.227-19 when applicable, or in subparagraph (c) (1) (ii) of the Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013, and in similar clauses in the NASA FAR Supplement. Contractor/
manufacturer is Netscape Communications Corporation, 501 East Middlefield Road, Mountain View, California 94043.

You may not export the Software except in compliance with applicable export controls. In particular, if the Software is
identified as not for export, then you may not export the Software outside the United States except in very limited
circumstances. See the end user license agreement accompanying the Software for more details.

:I Recycled and Recyclable Paper

©Netscape Communications Corporation 1997
All Rights Reserved

Printed in USA
97 96 95 10987654321

Netscape Communications Corporation 501 East Middlefield Road, Mountain View, CA 94043

What’s inl this ReferenCec..oocoviiiiiiiee e e i

This reference is organized around the functionality of the JavaScript
language. Sometimes you already know the name of an object or
method, but don’t know precisely where to look for it. This chapter
contains tables of links to aid in this situation.

Getting Started ... xliii

This book is a reference manual for the JavaScript language, includ-
ing objects in the core language and both client-side and server-side
extensions. JavaScript is Netscape’s cross-platform, object-based
scripting language for client and server applications.

What You Should Already KNOWccoooviiiiiiiiiiiiiiicce e

Where to Find JavaScript Information

Document CONVENTIONSceiiiieieeieie et xlv

Chapter 1 INtroduCtiOn ... 47

This chapter briefly introduces JavaScript, Netscape’s cross-platform,

JavaScript Reference iii

iv JavaScript Reference

object-based scripting language for client and server applications.

Client-Side JAVASCIIPE ..iviiiiiiiiieiii ettt 49
Server-Side JAVASCIIPEiiiiiiiiiiiiie e 50
JAVASCIIPE ODJECES ..ttt 52
SECUTILY L.ttt 55
Chapter 2 OPEratorSccoooiiiiiiiiiiiiiiieeee e 57

JavaScript has assignment, comparison, arithmetic, bitwise, logical,
string, and special operators. This chapter describes the operators and
contains information about operator precedence.

AsSIZNMENT OPETATOTS ...oiiiiiiiiiiiiiiiiiiic e 60
ComPAariSON OPETATOTScceeiiiiiiiiiiiiiieeeit ettt e e ea ettt e e e e e e s 61
Arithmetic OPEIALOLSc.eovieiiiiiiiieieiieit ettt 62
90 (MOAUIUS) .ttt 62
Ft (TACTEIMIEIIE) ot 62

== (DIECTEMEND) .itiiitiei ettt ettt ettt 62

= (UNAry NEGALON) ...oviiiiiiiiiiiieeii ettt 63
BitWiSe OPEIALOLSvviviiviiiiiiiiiieei ettt ettt ettt 63
Bitwise Logical OPEratorsccciiviiiiiiiiiiiiiiiiiie et 64
Bitwise Shift OPEratorscooviviiiiioiiiieieiee e, 65
LOGICAL OPEIALOLS ..iviiiiiiiiieiieit ettt 66
Short-Circuit EValuationc.cocooiiiiiiiii e 67
SEANG OPEIALOLS ..vviviiiitiiiiieit ettt ettt 67
SPECIAl OPEIALOTS ..ivviviivieiieiieti ettt 68
?: (Conditional OPErator)c..ccccooiiviiiiiiiiiiiiiitet e 68

, (COMMA OPETALOT)iviiiiiiieieiieeieeeeeeeeeete ettt 68
AEILETE .t 69
TLEWW ottt ettt et bt bttt e et 69
ERES et 72

By PO s 72
VOIA s 73
Chapter 3 StatemEntsc..oocoiiiiiiiiiiiiieeee s 75

This chapter describes all JavaScript statements. JavaScript statements

consist of keywords used with the appropriate syntax. A single state-
ment may span multiple lines. Multiple statements may occur on a
single line if each statement is separated by a semicolon.

DICAK .ot 77
[&l0] 00701110 | AT SPPPPRPPN 78
1010331510 L [P USSP 78
ARIELE ittt 80
O WHILE oo 81
EXPOIT ittt 81
O oot 82
FOILN oo 83
FUNCHON ittt e 83
TE L @LSE i 84
001 0103 A O SO P PP PRSP TOPPPPPPPPPPRIN 85
JaDElEA ..o 86
U110V s o LRSS UOPPSP 87
SWILCIL 1.ttt 87
T2 S S PSSO U SUPPPPPPRPPPIN 88
WHHLE oo 89
A4 11 L OSSP U PR PP 90
Chapter 4 COTE€c.ccocoooiiiiiiiiee oot 93

This chapter includes the JavaScript core objects Array , Boolean |
Date , Function , Math, Number, Object , and String . These objects
are used in both client-side and server-side JavaScript.

ATTAY oot 94
PIOPEITIES .ooiiiiiiiiiiiiiiiii i 98
MELROAS .. 99

BOOICAN ..ot 111
PIOPEITIES ..oiiiiiiiiiiii i 112
MELROMAS . 112

DaATE e 113
PIOPEITIES ...oiiiiiiiiiiiiiiiii 115
METNOUS ..ovviiviiiie ettt 116

JavaScript Reference v

vi JavaScript Reference

FUNCHON e 127

PIOPEIti€soooiiiiiiiiiii i 130
METNOAS .ttt 136
MATNL oo 137
PIOPEITIES ..iiiiiiiiiiiiiiii e 139
METNOAS ..t 142
INUIMDET et 155
PIOPEITIES .ovviiiiiieie ettt ettt ettt ettt 156
METNOAS .ttt 160
ODJECE ittt 161
PIOPEITES .oiviiiiiiiieie ettt ettt ettt ettt 162
METNOMS vttt 163
SEIIINE ittt e e e e 171
PLOPEITIES ..iiviiiiiiiie ittt 174
METNOAS ..t 175
REGEXD oo 201
PIOPEITIES ..oiiiiiiiiiiiiiii e 208
MELROAS .t 215
Chapter 5 DOCUMENT ..ottt 221

This chapter deals with the document and its associated objects, doc-
ument, Layer , Link , Anchor , Area, Image, and Applet .

AOCUIMENE .ot 222
PIOPEITES .oiviiiiiiiieie ettt ettt ettt ettt ettt eae e 226
METNOAS .t 240

LAIK et 250
PIOPErti€scoooiiiiiiiiiiiiii i 255
METNOUS .ot 261

ATCA oot 261

ANCROT L1t 262

TITMAZE oottt ettt ettt ettt ettt ettt ettt 264
PLOPEITIES ..iiiiiiiiiiiit et e 270
METNOUS .ottt 276

APPIEL oo 276

PIOPEITIES ...oiiiiiiiiiiiiiiiii 280
MELNOAS .t 287
Chapter 6 WindOWcc.ccocooiiiiiiiieeeeeeeeeeeee e 293

This chapter deals with the Window object and the client-side objects
associated with it: Frame, Location , and History

WANAOW .ottt 294
PIOPEITIES ...oiiiiiiiiiiiiiiiii 302
MEtNOMAS ...oviiiiiiii e 317

FIamiE oo 344

LOCATON 1.1ttt ettt et 344
PLOPEITIES .oviiiiiiiieie ettt 349
MEtNOMAS ...oviiiiiiic e 358

HASTOTY vttt ettt ettt ettt ettt ettt ettt se ettt 361
PIOPEITES 1.viiviiiiiie ettt ettt ettt ettt 363
METNOS ..ot 365

e (=< o N TSRO URUS TR 366
PIOPEITIES .ovivitiitititi ettt ettt ettt ettt 366

Chapter 7 FOIMooooiiiiiiiiiiee e 367

This chapter deals with the use of forms, which appear within a doc-
ument to obtain input from the user.

FOTII 1ottt ettt ettt ettt 368
PIOPEITIES ...oiiiiiiiiiiiiiiiii 372
MELNOAS ..ttt 375

HIAAEN oot 378
PIOPEITIES ...iiiiiiiiiiei it 379

TIEXE ittt 382
PLOPEITES ..eiieieiiie ettt ettt ettt et anee e 384
MELROAS .t 388

TEXEATEA ..ttt 390
PIOPEITIES ..oiiiiiiiiiiiiiiiii 393
MELNOAS .t 397

JavaScript Reference vii

viii JavaScript Reference

PASSWOIA .o 399

PLOPEITIES ..ottt 401
METNOAS .o 404
FIEUPLOAA ...t 406
PLOPEITES ..iiitiieieiie ettt ettt aeeas 408
METNOAS ..t 408
BULTOM 1ttt 409
PLOPEITIES ..iiuiiiiiiiieie et 410
METNOAS . 414
SUDIMUIL .ottt ettt 416
PLOPEITES ..eiitiieieiie ettt ettt ettt enees 418
METNOAS .t 421
RESEE ettt 423
PIOPEITIES vttt ettt ettt ettt ettt ettt 426
METNOAS ..t 427
RAGIO ottt 428
PLOPEITES ..iiutiiiiiiie ettt ettt anees 431
METNOAS .t 436
CRECKDOX ittt 437
PIOPEITIES ..uiiiiiiiiiii it 440
METNOAS .ot 443
SELECE .ttt 444
PLOPEITES ..ottt ettt ettt anees 449
METNOAS .ttt 454
OPHION ottt ettt ettt ettt 455
PIOPEITIES ...viuiiiiiiieit ittt ittt 458
Chapter 8 BrOWSETcoooiiiiiiiieee e 461

This chapter deals with the browser and elements associated with it.

DUAVIZATOT 1.ttt ittt ettt ettt ettt 461
PIOPEITES .ooviiiiiiiiiie ettt ettt ettt ettt 463
METNOUS .iiiieiie ettt 468

1Y 300 1St 74 oL TR PTUPRUPP 470
PIOPEITIES vttt ettt ettt ettt ettt ettt 472

PIUGIN oot 474
PIOPEITIES ottt ettt ettt ettt ettt 477

Chapter 9 Events and Event Handlers ... 479

This chapter contains the event object and the event handlers that are
used with client-side objects in JavaScript to evoke particular actions.
In addition, it contains general information about using events and
event handlers.

General Information about EVENtSccccoviiiiiiiiiiiiiiiiiiiiceiee e 481
Defining Event Handlerscccooiiiiiiiiiiiiiiie e 481
Events in Navigator 4.0cocciiiiiiiiiiiiiiciie e 482

EVEIIL 1ottt ettt et 485

ONADOIT .ttt et 487

ONBIUL 1ot 488

ONCRANGZE ..ot 490

ONCHCK it 491

ONDDICHCK ..oiiiiiii e 493

ONDIAGDIOD ettt 494

ONEITOT 1.ttt 495

ONFOCUS .ottt 499

ONKEYDOWIL ittt 500

ONKEYPIESS ittt 501

ONKEYUD oottt 502

(03 21 o I« KN OO PP PPRUUPPPPPRPIN: 503

ONMOUSEDOWIL ..ottt 506

ONMOUSEMOVE ..ottt e e e e e eeeeees 507

ONIMOUSEOUL ittt e e e et eeeeeas 508

ONIMOUSEOVET ..iiiiiiiieeeeee ettt e e e e et e ettt et ee e e e e s e e e eeneneaeeeees 509

ONMOUSEUD ..ottt 510

1032117 (o) 4 SISO PP 511

ONRESEL .ottt e e 512

ONRESIZE .ot 513

ONSEIECE ..o 513

ONSUDITIE L.ttt e 514

JavaScript Reference ix

x JavaScript Reference

ONUNIOAA ..o 515

Chapter 10 LiveWire Database Serviceccoceeiee, 517

This chapter contains the server-side objects associated with LiveWire:
database , DbPool , Connection , Cursor , Stproc , Resultset and

blob .

AALADASE oot 518
TTANSACHONS 1oiiiiiiiiiiiiiiiiiit e e e e e e e e e e e e e e e e e ettt e e e e e e e e aaeaeae s 520
PLOPEITIES ..iiiiiiiiiiiit et e 521
METNOAS .o 521

DDBPOOL ..o 542
PLOPEITES ..iiviiiiiiiie ittt 544
METNOMS ..ot 545

CONNECHON ...ttt ettt 560
PIOPEITES .oiviiiiiiiieieeiteie ettt ettt ettt ettt ettt eae e 561
METROMAS ..o, 561

(10T) SO PPPPRR 578
Properties ... 580
METNOMS ..o 582

SEPIOC ottt 590
PLOPEITIES ..iiiiiieiiiiit et 591
METNOAS .o 591

RESULLSEE ..vviiiiiiiiiiee et 594
Propertiesccooiiiiiiiiiiiiiii 597
METNOMS ..o 597

DLOD e 601
METNOAS ... 601

Chapter 11 Session Management ServiCeccocooererer.. 605

This chapter contains those server-side objects associated with manag-
ing a session, including request |, client , project , server , and

Lock .
FEQUESE .ttt ettt ettt ettt ettt ettt ettt ettt ettt 606
PIOPEITES .oiviiiiiiiiiieeite ettt ettt ettt ettt ettt 608
CHEIIE ettt 613

PIOPEITIES 1oviiviiviiie ettt ettt ettt ettt ettt ettt ene e 615

METNOMS ..ttt 616
PIOJECE ittt ettt ettt ettt ettt ettt ettt ettt ettt eae e 617
PIOPEITIES ottt ettt ettt ettt ettt 619
METNOAS ..ottt 619

1S <) PSPPSR UPIPSRRPO 620
PIOPEITIES 1oviiviiiiiieiii ittt ettt ettt ettt ettt ne e 622
METNOUS ..ttt 624

LOCK ettt 625
METNOUS ..ttt 625

Chapter 12 UtilIti€s ... 629
This chapter contains the server-side objects File and SendMail .

FELE ettt 629
PIOPEITES 1oviiviiiiiie ettt ettt ettt ettt et 632
METNOAS ...oviiiei ettt 632

SENAMAIL ...ttt 650
PTOPEITIES vvivitiiit ittt ettt ettt ettt et ettt ettt ettt e e 652
METNOAS .ttt 655

Chapter 13 Global FUnctions ... 657
This chapter contains all JavaScript functions not associated with any
object.

AAACHENE ..ttt ettt 659

AddRESPONSEHEAUERTviviiiiiiiiieieei et 660

DLOD et 661

CALLC e 662

AEDUZ oottt 663

deleteReSpONSEHEAdEToiiiiiiiiiii it 663

ESCAPE ettt ettt ettt ettt ettt b ettt et ettt 664

EVAL o 665

FTUSIL Lo 667

GETOPUONVAIUE ...oiiiiiiiiiei et 668

etOPHONVAIUECOUNT ..oivviiiiiiiiiiieii e 669

JavaScript Reference xi

xii JavaScript Reference

INUMDET oo 670
PATSEFIOAL ...ttt 671
PATSEINT ettt 672
TEAITECT .o e 674
1eGISTETCFUNCLON ...\ttt 675
58j5_generateCHENTIDcooiiiiiiiiiit e 676
88jS_GEtCGIVArIAbIE ..ottt 676
SSJS_GELCHENTIDiiviiiiieiiei ettt 678
SUIITLEZ oottt ettt ettt ettt ettt 679
FAIIIE ©oeeieee ettt 680
UTIESCADE vttt ettt ettt et es ettt ettt sttt et ettt ettt 681
UNTAITIE ©ooeeiee ettt ettt ettt 682
TVTIEE ottt 683
Chapter 14 Java packages for LiveConnect ..., 685
netscape.javascript.JSODJECT ...oioiiiiiiiiiiiiiiie i 685
Methods and static methodsc..ocooiiiiiiiii e, 687
netscape.javascript JSEXCEPHONoiiiiiiiiiiiiiiiii it 689
@00y 0 TSIy (e 10 s IR 689
netscape. plugin.PIUGINocooiiiiiiiiiiiiii i 690
Constructors and mMethodsooviiiiiiiiiic e 691
INA@X oo 695

What’s in this Reference

This reference is organized around the functionality of the JavaScript language.
Sometimes you already know the name of an object or method, but don’t
know precisely where to look for it. This chapter contains tables of links to aid
in this situation.

Table 1, “Operators,” is a list of all JavaScript operators, grouped by type of
operator.

Table 2, “Statements,” is an alphabetical list of all JavaScript statements.

Table 3, “Objects with their methods and properties,” is an alphabetical list of
all of JavaScript’s predefined classes and objects. The predefined methods and
properties for each object are listed.

Table 4, “Methods,” is an alphabetical list of all predefined methods, regardless
of the object to which they belong. The second column indicates the object
with which the method is associated. There are separate entries for methods of
the same name used in different objects. Each method name links to the
method in the indicated object.

Similarly, Table 5, “Properties,” is an alphabetical list of all predefined
properties, regardless of the object to which they belong. The second column
indicates the object with which the property is associated.

Table 6, “Global functions,” is an alphabetical list of JavaScript’s global
functions. These are functions which aren’t associated with any object.

Table 7, “Event handlers,” is an alphabetical list of all JavaScript event handlers.

Key to the versions

If there is an entry in both the Client Version and the Server Version columns
for a single construct, that construct is part of the core language. Otherwise, it
is defined only for the client or for the server, as indicated.

The version number indicates the versions of Netscape Navigator (Nav),
LiveWire (LW), or the Netscape servers (Svr), such as Enterprise Server and
FastTrack Server), for which the construct is defined.

What's in this Reference i

e A plus sign after a version number (as in Nav 3+) indicates that the
construct is defined for that version and all later versions (In the case of
server constructs, LW 1+ indicates the construct was defined for
LiveWire 1.0 and continues to be defined in Netscape 3.x servers.)

e If there is no plus sign (Nav 3) or there is a range (Nav 2-3), the construct
was only defined for the named releases.

e A construct that has existed for more than one release may have had
changes between releases. For this information, see the entry for the
construct.

Table | Operators

Operator Operator Client Server
Category version version
Arithmetic + Nav 2 LW 1
Operators
++ Nav 2 LW 1
- Nav 2 LW 1
- Nav 2 LW 1
* Nav 2 LW 1
/ Nav 2 LW 1
% Nav 2 LW 1
String + Nav 2 LW 1
Operators
+= Nav 2 LW 1
Logical && Nav 2 LW 1
O tors
perators | Nav 2 LW 1
! Nav 2 LW 1

ii JavaScript Reference

Table | Operators (Continued)

Operator Operator Client Server
Category version version
Bitwise & Nav 2 LW 1
Operators n Nav 2 LW 1
Nav 2 LW 1
~ Nav 2 LW 1
<< Nav 2 LW 1
>> Nav 2 LW 1
>>> Nav 2 LW 1
Assignment = Nav 2 LW 1
Operators . Nav 2 LW 1
-= Nav 2 LW 1
*= Nav 2 LW 1
I= Nav 2 LW 1
%= Nav 2 LW 1
&= Nav 2 LW 1
= Nav 2 LW 1
= Nav 2 LW 1
<<= Nav 2 LW 1
>>= Nav 2 LW 1
>>>= Nav 2 LW 1
Comparison == Nav 2 LW 1
Operators I Nav 2 LW 1
> Nav 2 LW 1
>= Nav 2 LW 1
< Nav 2 LW 1
<= Nav 2 LW 1

What's in this Reference iii

iv JavaScript Reference

Table | Operators (Continued)

Operator Operator Client Server

Category version version

Special ? Nav 2 LW 1

Operators ’ Nav 2 LW 1
delete Nav 2 LW 1
new Nav 2 LW 1
this Nav 2 LW 1
typeof Nav 3 LW 1
void Nav 3 LW 1

Table 2 Statements
Statement Client Server
version version

break Nav 2+ LW 1+

comment Nav 2+ LW 1+

continue Nav 2+ LW 1+

delete Nav 4 Svr 3

do...while Nav 4 Svr 3

export Nav 4 Svr 3

for Nav 2+ LW 1+

for...in Nav 2+ LW 1+

function Nav 2+ LW 1+

if...else Nav 2+ LW 1+

import Nav 4 Svr 3

labeled Nav 4 Svr 3

return Nav 2+ LW 1+

switch Nav 4 Svr 3

Table 2 Statements (Continued)

Statement Client Server
version version
var Nav 2+ LW 1+
while Nav 2+ LW 1+
with Nav 2+ LW 1+
Table 3 Objects with their methods and properties
Object Client Server Methods Properties Event
version version handlers
Anchor Nav 2+
Applet Nav 3+
Area Nav 3+
(see Link)
Array Nav 3+ LW 1+ concat index
(2 as join input
non- pop length
object) push prototype
reverse
shift
slice
splice
sort
toString
unshift
blob LW 1+ blobimage
blobLink
Boolean Nav 3+ LW 1+ toString prototype
Button Nav 2+ blur form onBlur
click name onClick
focus type onFocus
handleEvent value onMouseDown
onMouseUp

What's in this Reference v

Table 3 Objects with their methods and properties (Continued)

Object Client

version

Server
version

Methods Properties

Event
handlers

Checkbox Nav 2+

client

Connection

Cursor

LW 1+

Svr 3

LW 1+

blur checked

click defaultChecked
focus form
handleEvent name

type

value

destroy
expiration

beginTransaction
commitTransaction
connected

cursor

execute
majorErrorCode
majorErrorMessage
minorErrorCode
minorErrorMessage
release
rollbackTransaction
SQLTable
storedProc

toString

prototype

close cursorColumn
columnName prototype
columns

deleteRow

insertRow

next

updateRow

onBlur
onClick
onFocus

vi JavaScript Reference

Table 3 Objects with their methods and properties (Continued)

Object

Client
version

Server
version

Methods Properties

Event
handlers

database

Date

Nav 2+

LW 1+

LW 1+

beginTransaction
commitTransaction
connect

connected

cursor

disconnect

execute
majorErrorCode
majorErrorMessage
minorErrorCode
minorErrorMessage
rollbackTransaction
SQLTable
storedProc
storedProcArgs
toString

prototype

getDate
getDay
getHours
getMinutes
getMonth
getSeconds
getTime
getTimezoneOffset
getYear

parse

setDate
setHours
setMinutes
setMonth
setSeconds
setTime
setYear
toGMTString
toLocaleString
uTC

prototype

What's in this Reference vii

Table 3 Objects with their methods and properties (Continued)

Object Client Server Methods Properties Event
version version handlers
DbPool Svr 3 DbPool
connect
connected
connection
disconnect
majorErrorCode
majorErrorMessage
minorErrorCode
minorErrorMessage
storedProcArgs
toString
document Nav 2+ captureEvents alinkColor onClick
close anchors onDblClick
getSelection applets onKeyDown
handleEvent bgColor onKeyPress
open cookie onKeyUp
releaseEvents domain onMouseDown
routeEvent embeds onMouseUp
write fgColor
writeln formName
forms
images
lastModified
layers
linkColor
links
plugins
referrer
title
URL
vlinkColor

viii JavaScript Reference

Table 3 Objects with their methods and properties (Continued)

Object Client Server Methods Properties Event
version version handlers
event Nav 4 data
height
layerX
layerY
modifiers
pageX
pageY
screenX
screenY
target
type
which
width
File LW 1+ byteToString prototype
clearError
close
eof
error
exists
flush
getLength
getPosition
open
read
readByte
readin
setPosition
stringToByte
write
writeByte
writeln
FileUpload Nav 2+ blur form onBlur
focus name onChange
handleEvent type onFocus
select value

What's in this Reference ix

Table 3 Objects with their methods and properties (Continued)

Object Client Server Methods Properties Event
version version handlers

Form Nav 2+ handleEvent action onReset
reset elements onSubmit
submit encoding

length
method
name
target

Frame Nav 2+
(see Window)

Function Nav 3+ LW 1+ toString arguments
arity
caller
prototype

Hidden Nav 2+ form
name

type

value

History Nav 2+ back current
forward length
go next

previous

Image Nav 3+ handleEvent border onAbort
complete onError
height onKeyDown
hspace onKeyPress
lowsrc onKeyUp
name onLoad
prototype
src
vspace
width

x JavaScript Reference

Table 3 Objects with their methods and properties (Continued)

Object Client Server Methods Properties Event
version version handlers

Layer Nav 4 captureEvents above onBlur
handleEvent background onFocus
load bgColor onLoad
moveAbove below onMouseOut
moveBelow clip.bottom onMouseOver
moveBy clip.height
moveTo clip.left
moveToAbsolute clip.right
releaseEvents clip.top
resizeBy clip.width
resizeTo document
routeEvent left

name
pageX
pageY
parentLayer
siblingAbove
siblingBelow
src
top
visibility
zIndex

Link Nav 2+ handleEvent hash onClick
host onDblClick
hostname onKeyDown
href onKeyPress
pathname onKeyUp
port onMouseDown
protocol onMouseOut
search onMouseUp
target onMouseOver
text

Location Nav 2+ reload hash
replace host

hostname
href
pathname
port
protocol
search

What's in this Reference xi

Table 3 Objects with their methods and properties (Continued)

Object Client Server Methods Properties Event
version version handlers
Lock Svr 3 isValid
lock
unlock
Math Nav 2+ LW 1+ abs E
acos LN10
asin LN2
atan LOG10E
atan2 LOG2E
ceil Pl
cos SQRT1_2
exp SQRT2
floor
log
max
min
pow
random
round
sin
sqrt
tan
MimeType Nav 3+ description
enabledPlugin
suffixes
type
navigator Nav 2+ javaEnabled appCodeName
plugins.refresh appName
preference appVersion
taintEnabled language
mimeTypes
platform
plugins
userAgent

xii JavaScript Reference

Table 3 Objects with their methods and properties (Continued)

Object Client Server Methods Properties Event
version version handlers
Number Nav 3+ LW 1+ MAX_VALUE
MIN_VALUE
NaN
NEGATIVE_INFINITY
POSITIVE_INFINITY
prototype
Object Nav 2+ LW 1+ eval constructor
toString prototype
unwatch
valueOf
watch
Option Nav 2+ defaultSelected
selected
text
value
Password Nav 2+ blur defaultValue onBlur
focus form onFocus
handleEvent name
select type
value
Plugin Nav 3+ description
filename
length
name
project LW 1+ lock
unlock
Radio Nav 2+ blur checked onBlur
click defaultChecked onClick
focus form onFocus
handleEvent name
type
value

What's in this Reference xiii

Table 3 Objects with their methods and properties (Continued)

Object Client Server Methods Properties Event
version version handlers
RegExp Nav 4 Svr 3 compile $1, ..., $9
exec global
test ignoreCase
input ($_)
lastindex
lastMatch ($&)
lastParen ($+)
leftContext
multiline $*)
rightContext
source
request LW 1+ agent
imageX
imageY
inputName
ip
method
protocol
Reset Nav 2+ blur form onBlur
click name onClick
focus type onFocus
handleEvent value
Resultset Svr 3 close prototype
columnName
columns
next
screen Nav 4 availHeight
availwidth
colorDepth
height
pixelDepth
width
Select Nav 2+ blur form onBlur
focus length onChange
handleEvent name onFocus
options

selectedIndex
type

xiv JavaScript Reference

Table 3 Objects with their methods and properties (Continued)

Object Client Server Methods Properties Event
version version handlers
SendMail Svr 3 errorCode Bcc
errorMessage Body
send Cc
Errorsto
From
Organization
Replyto
Smtpserver
Subject
To
server LW 1+ lock host
unlock hostname
port
protocol
Stproc Svr 3 close prototype
outParamCount
outParameters
resultSet
returnValue

What's in this Reference xv

Table 3 Objects with their methods and properties (Continued)

Object

Client
version

Server
version

Methods

Properties

Event
handlers

String

Submit

Text

Nav 2+

Nav 2+

Nav 2+

LW 1+

anchor

big

blink

bold

charAt
charCodeAt
concat
fixed
fontcolor
fontsize

fromCharCode

indexOf
italics
lastindexOf
link
match
replace
search
slice
small
split
strike
sub
substr
substring
sup

toLowerCase
toUpperCase

blur

click

focus
handleEvent

blur

focus
handleEvent
select

length
prototype

form
name
type

value

defaultValue
form

name

type

value

onBlur
onClick
onFocus

onBlur
onChange
onFocus
onSelect

xvi JavaScript Reference

Table 3 Objects with their methods and properties (Continued)

Object Client Server Methods Properties Event
version version handlers
Textarea Nav 2+ blur defaultValue onBlur
focus form onChange
handleEvent name onFocus
select type onKeyDown
value onKeyPress
onKeyUp
onSelect
Window Nav 2+ alert closed onBlur
back defaultStatus onDragDrop
blur document onError
captureEvents frames onFocus
clearinterval history onLoad
clearTimeout innerHeight onMove
close innerWidth onResize
confirm length onUnload
disableExternalCapture location
enableExternalCapture locationbar
find menubar
focus name
forward opener
handleEvent outerHeight
home outerWidth
moveBy pageXOffset
moveTo pageYOffset
open parent
print personalbar
prompt scrollbars
releaseEvents self
resizeBy status
resizeTo statusbar
routeEvent toolbar
scroll top
scrollBy window
scrollTo
setinterval
setTimeout
stop

What's in this Reference xvii

xviii JavaScript Reference

Table 4 Methods

Method Of object Client Server
version Version

abs Math Nav 2+ LW 1+

acos Math Nav 2+ LW 1+

alert Window Nav 2+

anchor String Nav 2+ LW 1+

asin Math Nav 2+ LW 1+

atan Math Nav 2+ LW 1+

atan2 Math Nav 2+ LW 1+

back History Nav 2+

back Window Nav 4

beginTransaction Connection Svr 3

beginTransaction database LW 1+

big String Nav 2+ LW 1+

blink String Nav 2+ LW 1+

blobimage blob LW 1+

blobLink blob LW 1+

blur Button Nav 2+

blur Checkbox Nav 2+

blur FileUpload Nav 2+

blur Password Nav 2+

blur Radio Nav 2+

blur Reset Nav 2+

blur Select Nav 2+

blur Submit Nav 2+

blur Text Nav 2+

blur Textarea Nav 2+

Table 4 Methods (Continued)

Method Of object Client Server
version Version

blur Window Nav 3+

bold String Nav 2+ LW 1+

byteToString File LW 1+

captureEvents document Nav 4

captureEvents Layer Nav 4

captureEvents Window Nav 4

ceil Math Nav 2+ LW 1+

charAt String Nav 2+ LW 1+

charCodeAt String Nav 4 Svr 3

clearError File LW 1+

clearinterval Window Nav 4

clearTimeout Window Nav 2+

click Button Nav 2+

click Checkbox Nav 2+

click Radio Nav 2+

click Reset Nav 2+

click Submit Nav 2+

close Cursor LW 1+

close document Nav 2+

close File LW 1+

close Resultset Svr 3

close Stproc Svr 3

close Window Nav 2+

columnName Cursor LW 1+

columnName Resultset Svr 3

columns Cursor LW 1+

What's in this Reference xix

xx JavaScript Reference

Table 4 Methods (Continued)

Method Of object Client Server
version Version
columns Resultset Svr 3
commitTransaction Connection Svr 3
commitTransaction database LW 1+
compile RegExp Nav 4 Svr 3
concat Array Nav 4 Svr 3
concat String Nav 4 Svr 3
confirm Window Nav 2+
connect database LW 1+
connect DbPool Svr 3
connected Connection Svr 3
connected database LW 1+
connected DbPool Svr 3
connection DbPool Svr 3
cos Math Nav 2+ LW 1+
cursor Connection Svr 3
cursor database LW 1+
DbPool DbPool Svr 3
deleteRow Cursor LW 1+
destroy client LW 1+
disableExternalCapture Window Nav 4
disconnect database LW 1+
disconnect DbPool Svr 3
enableExternalCapture Window Nav 4
eof File LW 1+
error File LW 1+
errorCode SendMalil Svr 3

Table 4 Methods (Continued)

Method Of object Client Server
version Version

errorMessage SendMail Svr 3

eval Object Nav 3 LW 1+

exec RegExp Nav 4 Svr 3

execute Connection Svr 3

execute database LW 1+

exists File LW 1+

exp Math Nav 2+ LW 1+

expiration client LW 1+

find Window Nav 4

fixed String Nav 2+ LW 1+

floor Math Nav 2+ LW 1+

flush File LW 1+

focus Button Nav 2+

focus Checkbox Nav 2+

focus FileUpload Nav 2+

focus Password Nav 2+

focus Radio Nav 2+

focus Reset Nav 2+

focus Select Nav 2+

focus Submit Nav 2+

focus Text Nav 2+

focus Textarea Nav 2+

focus Window Nav 3+

fontcolor String Nav 2+ LW 1+

fontsize String Nav 2+ LW 1+

forward History Nav 2+

What's in this Reference xxi

xxii JavaScript Reference

Table 4 Methods (Continued)

Method Of object Client Server
version Version
forward Window Nav 4
fromCharCode String Nav 4 Svr 3
getDate Date Nav 2+ LW 1+
getDay Date Nav 2+ LW 1+
getHours Date Nav 2+ LW 1+
getLength File LW 1+
getMinutes Date Nav 2+ LW 1+
getMonth Date Nav 2+ LW 1+
getPosition File LW 1+
getSeconds Date Nav 2+ LW 1+
getSelection document Nav 4
getTime Date Nav 2+ LW 1+
getTimezoneOffset Date Nav 2+ LW 1+
getYear Date Nav 2+ LW 1+
go History Nav 2+
handleEvent Button Nav 4
handleEvent Checkbox Nav 4
handleEvent document Nav 4
handleEvent FileUpload Nav 4
handleEvent Form Nav 4
handleEvent Image Nav 4
handleEvent Layer Nav 4
handleEvent Link Nav 4
handleEvent Password Nav 4
handleEvent Radio Nav 4
handleEvent Reset Nav 4

Table 4 Methods (Continued)

Method Of object Client Server
version Version
handleEvent Select Nav 4
handleEvent Submit Nav 4
handleEvent Text Nav 4
handleEvent Textarea Nav 4
handleEvent Window Nav 4
home Window Nav 4
indexOf String Nav 2+ LW 1+
insertRow Cursor LW 1+
isValid Lock Svr 3
italics String Nav 2+ LW 1+
javaEnabled navigator Nav 3+
join Array Nav 3+ LW 1+
lastindexOf String Nav 2+ LW 1+
link String Nav 2+ LW 1+
load Layer Nav 4
lock Lock Svr 3
lock project LW 1+
lock server LW 1+
log Math Nav 2+ LW 1+
majorErrorCode Connection Svr 3
majorErrorCode database LW 1+
majorErrorCode DbPool Svr 3
majorErrorMessage Connection Svr 3
majorErrorMessage database LW 1+
majorErrorMessage DbPool Svr 3
match String Nav 4 Svr 3

What's in this Reference xxiii

xxiv JavaScript Reference

Table 4 Methods (Continued)

Method Of object Client Server
version Version
max Math Nav 2+ LW 1+
min Math Nav 2+ LW 1+
minorErrorCode Connection Svr 3
minorErrorCode database LW 1+
minorErrorCode DbPool Svr 3
minorErrorMessage Connection Svr 3
minorErrorMessage database LW 1+
minorErrorMessage DbPool Svr 3
moveAbove Layer Nav 4
moveBelow Layer Nav 4
moveBy Layer Nav 4
moveBy Window Nav 4
moveTo Layer Nav 4
moveTo Window Nav 4
moveToAbsolute Layer Nav 4
next Cursor LW 1+
next Resultset Svr 3
open document Nav 2+
open File LW 1+
open Window Nav 2+
outParamCount Stproc Svr 3
outParameters Stproc Svr 3
parse Date Nav 2+ LW 1+
plugins.refresh navigator Nav 3+
pop Array Nav 4 Svr 3
pow Math Nav 2+ LW 1+

Table 4 Methods (Continued)

Method Of object Client Server
version Version

preference navigator Nav 4

print Window Nav 4

prompt Window Nav 2+

push Array Nav 4 Svr 3

random Math Nav 2+ LW 1+

read File LW 1+

readByte File LW 1+

readin File LW 1+

refresh navigator.plugins Nav 3+

release Connection Svr 3

releaseEvents document Nav 4

releaseEvents Layer Nav 4

releaseEvents Window Nav 4

reload Location Nav 3+

replace Location Nav 3+

replace String Nav 4 Svr 3

reset Form Nav 3+

resizeBy Layer Nav 4

resizeBy Window Nav 4

resizeTo Layer Nav 4

resizeTo Window Nav 4

resultSet Stproc Svr 3

returnValue Stproc Svr 3

reverse Array Nav 3+ LW 1+

rollbackTransaction Connection Svr 3

rollbackTransaction database LW 1+

What's in this Reference xxv

Table 4 Methods (Continued)

Method Of object Client Server
version Version

round Math Nav 2+ LW 1+

routeEvent document Nav 4

routeEvent Layer Nav 4

routeEvent Window Nav 4

scroll Window Nav 2-3

scrollBy Window Nav 4

scrollTo Window Nav 4

search String Nav 4 Svr 3

select FileUpload Nav 2+

select Password Nav 2+

select Text Nav 2+

select Textarea Nav 2+

send SendMalil Svr 3

setDate Date Nav 2+ LW 1+

setHours Date Nav 2+ LW 1+

setinterval Window Nav 4

setMinutes Date Nav 2+ LW 1+

setMonth Date Nav 2+ LW 1+

setPosition File LW 1+

setSeconds Date Nav 2+ LW 1+

setTime Date Nav 2+ LW 1+

setTimeout Window Nav 2+

setYear Date Nav 2+ LW 1+

shift Array Nav 4 Svr 3

sin Math Nav 2+ LW 1+

slice Array Nav 4 Svr 3

xxvi JavaScript Reference

Table 4 Methods (Continued)

Method Of object Client Server
version Version
slice String Nav 4 Svr 3
small String Nav 2+ LW 1+
sort Array Nav 3+ LW 1+
splice Array Nav 4 Svr 3
split String Nav 3+ LW 1+
SQLTable Connection Svr 3
SQLTable database LW 1+
sqrt Math Nav 2+ LW 1+
stop Window Nav 4
storedProc Connection Svr 3
storedProc database Svr 3
storedProcArgs database Svr 3
storedProcArgs DbPool Svr 3
strike String Nav 2+ LW 1+
stringToByte File LW 1+
sub String Nav 2+ LW 1+
submit Form Nav 2+
substr String Nav 4 Svr 3
substring String Nav 2+ LW 1+
sup String Nav 2+ LW 1+
taintEnabled navigator Nav 3 LW 1
tan Math Nav 2+ LW 1+
test RegExp Nav 4 Svr 3
toGMTString Date Nav 2+ LW 1+
toLocaleString Date Nav 2+ LW 1+
toLowerCase String Nav 2+ LW 1+

What's in this Reference xxvii

Table 4 Methods (Continued)

Method Of object Client Server
version Version
toString Array Nav 3+ LW 1+
toString Boolean Nav 3+ LW 1+
toString Connection Svr 3
toString database LW 1+
toString DbPool Svr 3
toString Number Nav 3+ LW 1+
toString Object Nav 2+ LW 1+
toUpperCase String Nav 2+ LW 1+
unlock Lock Svr 3
unlock project LW 1+
unlock server LW 1+
unshift Array Nav 4 Svr 3
unwatch Object Nav 4 Svr 3
updateRow Cursor LW 1+
uTC Date Nav 2+ LW 1+
valueOf Object Nav 3+ LW 1+
watch Object Nav 4 Svr 3
write document Nav 2+
write File LW 1+
writeByte File LW 1+
writeln document Nav 2+
writeln File LW 1+

xxviii JavaScript Reference

Table 5 Properties

Property Of object Client Server
version version

$1, ..., $9 RegExp Nav 4 Svr 3

$ RegExp Nav 4 Svr 3

$* RegExp Nav 4 Svr 3

$& RegExp Nav 4 Svr 3

$+ RegExp Nav 4 Svr 3

$ RegExp Nav 4 Svr 3

$ RegExp Nav 4 Svr 3

above Layer Nav 4

action Form Nav 2+

agent request LW 1+

alinkColor document Nav 2+

anchors document Nav 2+

appCodeName navigator Nav 2+

applets document Nav 3+

appName navigator Nav 2+

appVersion navigator Nav 2+

arguments Function Nav 3+ LW 1+

arity Function Nav 4 LW 1+

background Layer Nav 4

below Layer Nav 4

bgColor document Nav 2+

bgColor Layer Nav 4

border Image Nav 3+

caller Function Nav 3+ LW 1+

checked Checkbox Nav 2+

What's in this Reference xxix

Table 5 Properties (Continued)

Property Of object Client Server
version version

checked Radio Nav 2+

clip.bottom Layer Nav 4

clip.height Layer Nav 4

clip.left Layer Nav 4

clip.right Layer Nav 4

clip.top Layer Nav 4

clip.width Layer Nav 4

closed Window Nav 3+

colorDepth screen Nav 4

complete Image Nav 3+

constructor Object Nav 3+ LW 1+

cookie document Nav 2+

current History Nav 3+

cursorColumn Cursor LW 1+

data event Nav 4

defaultChecked Checkbox Nav 2+

defaultChecked Radio Nav 2+

defaultStatus Window Nav 2+

defaultSelected Option Nav 3+

defaultValue Password Nav 2+

defaultValue Text Nav 2+

defaultValue Textarea Nav 2+

description MimeType Nav 3+

description Plugin Nav 3+

document Layer Nav 4

document Window Nav 2+

xxx JavaScript Reference

Table 5 Properties (Continued)

Property Of object Client Server
version version

domain document Nav 3+

E Math Nav 2+ LW 1+

elements Form Nav 2+

embeds document Nav 3+

enabledPlugin MimeType Nav 3+

encoding Form Nav 2+

fgColor document Nav 2+

filename Plugin Nav 3+

form Button Nav 2+

form Checkbox Nav 2+

form FileUpload Nav 2+

form Hidden Nav 2+

form Password Nav 2+

form Radio Nav 2+

form Reset Nav 2+

form Select Nav 2+

form Submit Nav 2+

form Text Nav 2+

form Textarea Nav 2+

formName document Nav 3+

forms document Nav 3+

frames Window Nav 2+

global RegExp Nav 4 Svr 3

hash Link Nav 2+

hash Location Nav 2+

height event Nav 4

What's in this Reference xxxi

xxxii JavaScript Reference

Table 5 Properties (Continued)

Property Of object Client Server
version version

height Image Nav 3+

height screen Nav 4

history Window Nav 2+

host Link Nav 2+

host Location Nav 2+

host server LW 1+

hostname Link Nav 2+

hostname Location Nav 2+

hostname server LW 1+

href Link Nav 2+

href Location Nav 2+

hspace Image Nav 3+

ignoreCase RegExp Nav 4 Svr 3

images document Nav 3+

imageX request LW 1+

imageY request LW 1+

index Array Nav 4 Svr 3

input Array Nav 4 Svr 3

innerHeight Window Nav 4

innerWidth Window Nav 4

input RegExp Nav 4 Svr 3

inputName request LW 1+

ip request LW 1+

language navigator Nav 4

lastindex RegExp Nav 4 Svr 3

lastMatch RegExp Nav 4 Svr 3

Table 5 Properties (Continued)

Property Of object Client Server
version version

lastModified document Nav 2+

lastParen RegExp Nav 4 Svr 3

layerX event Nav 4

layerY event Nav 4

layers document Nav 4

left Layer Nav 4

leftContext RegExp Nav 4 Svr 3

length Array Nav 3+ LW 1+

length Form Nav 2+

length History Nav 2+

length Plugin Nav 3+

length Select Nav 2+

length String Nav 2+ LW 1+

length Window Nav 2+

linkColor document Nav 2+

links document Nav 2+

location Window Nav 2+

locationbar Window Nav 4

LN10 Math Nav 2+ LW 1+

LN2 Math Nav 2+ LW 1+

LOG10E Math Nav 2+ LW 1+

LOG2E Math Nav 2+ LW 1+

lowsrc Image Nav 3+

MAX_VALUE Number Nav 3+ LW 1+

menubar Window Nav 4

method Form Nav 2+

What's in this Reference xxxiii

xxxiv JavaScript Reference

Table 5 Properties (Continued)

Property Of object Client Server
version version

method request LW 1+

mimeTypes navigator Nav 3+

modifiers event Nav 4

MIN_VALUE Number Nav 3+ LW 1+

multiline RegExp Nav 4 Svr 3

name Button Nav 2+

name Checkbox Nav 2+

name FileUpload Nav 2+

name Form Nav 2+

name Hidden Nav 2+

name Image Nav 3+

name Layer Nav 4

name Password Nav 2+

name Plugin Nav 3+

name Radio Nav 2+

name Reset Nav 2+

name Select Nav 2+

name Submit Nav 2+

name Text Nav 2+

name Textarea Nav 2+

name Window Nav 2+

NaN Number Nav 3+ LW 1+

NEGATIVE_INFINITY Number Nav 3+ LW 1+

next History Nav 3+

opener Window Nav 3+

options Select Nav 2+

Table 5 Properties (Continued)

Property Of object Client Server
version version

outerHeight Window Nav 4

outerWidth Window Nav 4

pageX event Nav 4

pageX Layer Nav 4

pageXOffset Window Nav 4

pageY event Nav 4

pageY Layer Nav 4

pageY Offset Window Nav 4

parent Window Nav 2+

parentLayer Layer Nav 4

pathname Link Nav 2+

pathname Location Nav 2+

personalbar Window Nav 4

Pl Math Nav 2+ LW 1+

pixelDepth screen Nav 4

platform navigator Nav 4

plugins document Nav 3+

plugins navigator Nav 3+

port Link Nav 2+

port Location Nav 2+

port server LW 1+

POSITIVE_INFINITY Number Nav 3+ LW 1+

previous History Nav 3+

protocol Link Nav 2+

protocol Location Nav 2+

protocol request LW 1+

What's in this Reference xxxv

Table 5 Properties (Continued)

Property Of object Client Server
version version
protocol server LW 1+
prototype Array Nav 3+ LW 1+
prototype Boolean Nav 3+ LW 1+
prototype Connection Svr 3
prototype Cursor Nav 3+ LW 1+
prototype database LW 1+
prototype Date Nav 3+ LW 1+
prototype DbPool Svr 3
prototype File LW 1+
prototype Function Nav 3+ LW 1+
prototype Image Nav 3+ LW 1+
prototype Number Nav 3+ LW 1+
prototype Object Nav 3+ LW 1+
prototype Resultset Svr 3
prototype SendMalil Svr 3
prototype Stproc Svr 3
prototype String Nav 3+ LW 1+
referrer document Nav 2+
rightContext RegExp Nav 4 Svr 3
screenX event Nav 4
screenY event Nav 4
scrollbars Window Nav 4
search Link Nav 2+
search Location Nav 2+
selected Option Nav 2+
selectedindex Select Nav 2+

xxxvi JavaScript Reference

Table 5 Properties (Continued)

Property Of object Client Server
version version

self Window Nav 2+

siblingAbove Layer Nav 4

siblingBelow Layer Nav 4

source RegExp Nav 4 Svr 3

SQRT1_2 Math Nav 2+ LW 1+

SQRT2 Math Nav 2+ LW 1+

src Image Nav 3+

src Layer Nav 4

status Window Nav 2+

statusbar Window Nav 4

suffixes MimeType Nav 3+

target event Nav 4

target Form Nav 2+

target Link Nav 2+

text Option Nav 2+

text Link Nav 4

title document Nav 2+

toolbar Window Nav 4

top Layer Nav 4

top Window Nav 2+

type Button Nav 3+

type Checkbox Nav 3+

type event Nav 4

type FileUpload Nav 3+

type Hidden Nav 3+

type Password Nav 3+

What's in this Reference xxxvii

xxxviii JavaScript Reference

Table 5 Properties (Continued)

Property Of object Client Server
version version

type MimeType Nav 3+
type Radio Nav 3+
type Reset Nav 3+
type Select Nav 3+
type Submit Nav 3+
type Text Nav 3+
type Textarea Nav 3+
URL document Nav 2+
userAgent navigator Nav 2+
value Button Nav 2+
value Checkbox Nav 2+
value FileUpload Nav 2+
value Hidden Nav 2+
value Option Nav 2+
value Password Nav 2+
value Radio Nav 2+
value Reset Nav 2+
value Submit Nav 2+
value Text Nav 2+
value Textarea Nav 2+
visibility Layer Nav 4
vlinkColor document Nav 2+
vspace Image Nav 3+
which event Nav 4
width event Nav 4
width Image Nav 3+

Table 5 Properties (Continued)

Property Of object Client Server
version version
width screen Nav 4
window Window Nav 2+
zIndex Layer Nav 4
Table 6 Global functions
Function Client Server
version version
addClient LW 1+
addResponseHeader Svr 3
blob LW 1+
callC LW 1+
debug LW 1+
deleteResponseHeader Svr 3
escape Nav 2+ LW 1+
eval Nav 2+ LW 1+
flush LW 1+
getOptionValue LW 1+
getOptionValueCount LW 1+
isNaN Nav 3+ LW 1+
Number Nav 4 Svr 3
parseFloat Nav 3+ LW 1+
parselnt Nav 3+ LW 1+
redirect LW 1+
registerCFunction LW 1+
ssjs_generateClientID Svr 3

What's in this Reference xxxix

Table 6 Global functions (Continued)

Function Client Server
version version
ssjs_getCGlVariable Svr 3
ssjs_getClientID Svr 3
String Nav 4 Svr 3
taint Nav 3 LW 1+
unescape Nav 2+ LW 1+
untaint Nav 3 LW 1+
write LW 1+

Table 7 Event handlers

Event handler Client Handler for
version
onAbort Nav 3+ Image
onBlur Nav 3+ Button , Checkbox , FileUpload , Layer ,

Password , Radio , Reset , Select , Submit , Text ,
Textarea , Window

onChange Nav 3+ FileUpload , Select , Text , Textarea

onClick Nav 3+ Button , Checkbox , document , Link , Radio ,
Reset , Submit

onDblClick Nav 4 document , Link

onDragDrop Nav 4 Window

onError Nav 3+ Image , Window

onFocus Nav 3+ Button , Checkbox , FileUpload , Layer |,

Password , Radio , Reset , Select , Submit | Text ,
Textarea , Window

onKeyDown Nav 4 document , Image, Link , Textarea
onKeyPress Nav 4 document , Image, Link , Textarea
onKeyUp Nav 4 document , Image, Link , Textarea

x| JavaScript Reference

Table 7 Event handlers (Continued)

Event handler Client Handler for

version
onLoad Nav 3+ Image , Layer , Window
onMouseDown Nav 4 Button , document , Link
onMouseMove Nav 4
onMouseOut Nav 3+ Layer , Link
onMouseOver Nav 3+ Layer , Link
onMouseUp Nav 4 Button , document , Link
onMove Nav 4 Window
onReset Nav 3+ Form
onResize Nav 4 Window
onSelect Nav 3+ Text , Textarea
onSubmit Nav 3+ Form
onUnload Nav 3+ Window

What's in this Reference xli

xlii JavaScript Reference

Getting Started

This book is a reference manual for the JavaScript language, including objects
in the core language and both client-side and server-side extensions. JavaScript

is Netscape’s cross-platform, object-based scripting language for client and
server applications.

Sections:

e What You Should Already Know

e Where to Find JavaScript Information
e Document Conventions

What You Should Already Know

This book assumes you have this basic background:
e A general understanding of the Internet and the World Wide Web (WWW).
e Good working knowledge of HyperText Markup Language (HTML).

Experience with forms and the Common Gateway Interface (CGD is also
useful.

e If you're going to use the LiveWire Database Service, relational databases
and a working knowledge of Structured Query Language (SQL).

Getting Started xliii

Where to Find JavaScript Information

Where to Find JavaScript Information

xliv JavaScript Reference

Because JavaScript can be approached on several levels, its documentation has
been split across several books to facilitate your introduction. The suite of
online JavaScript books includes:

JavaScript Guide' provides information about the core JavaScript language
and about its client-side objects.

Writing Server-Side JavaScript Applications® provides information about
JavaScript’s server-side objects and functions. In some cases, core language
features work differently on the client than on the server. These differences
are also discussed in this book. Finally, this book provides extra
information you need to create an entire JavaScript application.

JavaScript Reference’® (this manual) provides reference material for the
entire JavaScript language, including both client-side and server-side
JavaScript.

The JavaScript page® of the DevEdge library® contains several other
documents of interest about JavaScript. The contents of this page change
frequently. You should revisit it periodically to get the newest information.

In addition, other Netscape books discuss certain aspects of JavaScript
particularly relevant to their topic area.

The Netscape web site contains much information that can be useful when
you're creating JavaScript applications. Some URLs of particular interest include:

http://home.netscape.com/one_stop/intranet_apps/index.html

This is the Netscape AppFoundry Online home page. Netscape AppFoundry
Online is a source for starter applications, technical information, tools, and
expert forums for quickly building and dynamically deploying open intranet
applications. This site also includes troubleshooting information in the

resources section and extra help on setting up your JavaScript environment.

AN N

http://developer.netscape.com/library/documentation/communicator/jsguide4/
index.htm
http://developer.netscape.com/library/documentation/enterprise/wrijsap/index.htm
http://developer.netscape.com/library/documentation/communicator/jsref/index.htm
http://developer.netscape.com/library/documentation/javascript.html
http://developer.netscape.com/library/documentation/

Document Conventions

e http://help.netscape.com/products/tools/livewire

This is Netscape’s technical support page for information on the LiveWire
Database Service. It contains lots of useful pointers to information on using
LiveWire in your JavaScript applications.

e http://developer.netscape.com/library/one/sdk/livewire/

This is Netscape’s support page for information on server-side JavaScript.
This URL is also available by clicking the Documentation link on the
Netscape Server Application Manager

Document Conventions

Occasionally this book tells you where to find things in the user interface of
Netscape Navigator. In these cases, the book describes the user interface in
Navigator 4.0. This interface may be different in earlier versions of the browser.

JavaScript applications run on many operating systems; the information here
applies to all versions. File and directory paths are given in Windows format
(with backslashes separating directory names). For Unix versions, the directory
paths are the same, except that you use slashes instead of backslashes to
separate directories.

This book uses uniform resource locators (URLs) of the form

http:// server.domain | path / file .html

In these URLs, server represents the name of the server on which you run your
application, such as researchl or www domain represents your Internet
domain name, such as netscape.com or uiuc.edu ; path represents the
directory structure on the server; and file.html represents an individual
filename. In general, items in italics in URLs are placeholders and items in
normal monospace font are literals. If your server has Secure Sockets Layer
(SSL) enabled, you would use https instead of http in the URL.

This book uses the following font conventions:

e The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), filenames,
pathnames, directory names, HTML tags, and any text that must be typed
on the screen. (Monospace italic font is used for placeholders
embedded in code.)

Getting Started xlv

Document Conventions

e Jtalic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

e Boldface type is used for glossary terms.

xlvi JavaScript Reference

Chapter

Introduction

This chapter briefly introduces JavaScript, Netscape’s cross-platform, object-
based scripting language for client and server applications.

JavaScript lets you create applications that run over the Internet. Using
JavaScript, you can create dynamic HTML pages that process user input and
maintain persistent data using special objects, files, and relational databases.
You can build applications ranging from internal corporate information
management and intranet publishing to mass-market electronic transactions
and commerce. Through JavaScript’s LiveConnect functionality, your
applications can access Java and CORBA distributed object applications.

Server-side and client-side JavaScript share the same core language. This core
language corresponds to ECMA-262, the scripting language standardized by the
European standards body, with some additions. The core language contains a
set of core objects, such as the Array and Date objects. It also defines other
language features such as its expressions, statements, and operators. Although
server-side and client-side JavaScript use the same core functionality, in some
cases they use them differently. You can download a PDF version of the
ECMA-262 specification’.

The components of JavaScript are illustrated in Figure 1.1.

1. http://developer.netscape.com/library/javascript/e262-pdf.pdf

Chapter |, Introduction 47

48 JavaScript Reference

Figure 1.1 The JavaScript language.

CLIENT-SIDE JAVASCRIPT
|

Client-side
additions Server-side
(such as window additions
and history) Core h
JavaScript (such as server
and database

Core language

features (such

as variables,
Client-side functions, and

LiveConnect)

’(Server-side _‘

I
SERVER-SIDE JAVASCRIPT

Client-side JavaScript (or Navigator JavaScript) encompasses the core language
plus extras such as the predefined objects only relevant to running JavaScript in
a browser. Server-side JavaScript encompasses the same core language plus
extras such as the predefined objects and functions only relevant to running
JavaScript on a server.

Client-side JavaScript is embedded directly in HTML pages and is interpreted by
the browser completely at runtime. Because production applications frequently
have greater performance demands upon them, JavaScript applications that
take advantage of its server-side capabilities are compiled before they are
deployed. The next two sections introduce you to how JavaScript works on the
client and on the server.

Client-Side JavaScript

Client-Side JavaScript

Web browsers such as Netscape Navigator 2.0 (and later versions) can interpret
client-side JavaScript statements embedded in an HTML page. When the
browser (or client) requests such a page, the server sends the full content of the
document, including HTML and JavaScript statements, over the network to the
client. The client reads the page from top to bottom, displaying the results of
the HTML and executing JavaScript statements as it goes. This process produces
the results that the user sees and is illustrated in Figure 1.2.

Figure 1.2 Client-side JavaScript.

<HEAD><TITLE>A Simple Document</TITLE>
<SCRIPT>
function update(form) {

alert("Form being updated")

}

</SCRIPT>

</HEAD>

<BODY>

<FORM NAME="myform" ACTION="start.htm"
METHOD="get">

Enter a value:

</FORM> Internet
</BODY>
mypage.html
bk - [A R il Dol e
M B2 Wiew Go Bodareris [péate Qeecons o Wiedss Held
Dk |t | Mame | e | ebias | e | e | Pin | Red |
3 """'"'“'I"" THiH et w06 {5 prasa b (W2 Syl Ao ll K
Whar's b | Wb Ceett | Duisamon | b e | ;
Boter walue: Dot Vel] T |
i - B . Jp=nfaiph Her
Chitgh iF yeis wamni o b 0 o maling lse ﬁ e ke

Hibmh | —— ——

Il | Do Do |

Client-side JavaScript statements embedded in an HTML page can respond to
user events such as mouse clicks, form input, and page navigation. For
example, you can write a JavaScript function to verify that users enter valid

Chapter 1, Introduction 49

Server-Side JavaScript

information into a form requesting a telephone number or zip code. Without
any network transmission, the embedded JavaScript on the HTML page can
check the entered data and display a dialog box to the user who enters invalid
data.

Server-Side JavaScript

50 JavaScript Reference

On the server, JavaScript is also embedded in HTML pages. The server-side
statements can connect to relational databases from different vendors, share
information across users of an application, access the file system on the server,
or communicate with other applications through LiveConnect and Java. A
compiled JavaScript application can also include client-side JavaScript in
addition to server-side JavaScript.

In contrast to pure client-side JavaScript scripts, JavaScript applications that use
server-side JavaScript are compiled into bytecode executable files. These
application executables are run in concert with a web server that contains the
JavaScript runtime engine. For this reason, creating JavaScript applications is a
two-stage process.

In the first stage, shown in Figure 1.3, you (the developer) create HTML pages
(which can contain both client-side and server-side JavaScript statements) and
JavaScript files. You then compile all of those files into a single executable.

Figure 1.3 Server-side JavaScript during development.

function Substitute(guess, word, answer) {
var result ="";
var len = word. | ength;
var pos = O;
while(pos < len)
var word_char = word. substring(pos, pos + 1);
var answer_char = answer.substring(pos, pos + 1);
if (word_char guess) result = result + guess;
else result = result + answer_char;
pos = pos + 1;

return result;

Server-Side JavaScript

<HTML> <HEAD> <TI TLE> Hangman </ Tl TLE></ HEAD>
<BODY> </ H1> Hangman </ H1>

<SERVER>

if (client.ganeno == null) {
client.gameno = 1
client.newgane = "true"

}

</ SERVER>

You have used the following letters so far:
<SERVER>wri t e(cl i ent. used) </ SERVER>

<FORM METHOD="post" ACTI ON="hangnan. ht ni' >
<p>

What is your guess?
<INPUT TYPE="text"

NAMVE=" guess" S| ZE="1">

</ BODY></ HTM.>

} 1

hangman. j s JavaScript Web file
application (bytecode
compiler executable)

hangman. ht m

In the second stage, shown in Figure 1.4, a page in the application is requested
by a client browser. The runtime engine uses the application executable to look
up the source page and dynamically generate the HTML page to return. It runs
any server-side JavaScript statements found on the page. The result of those
statements might add new HTML or client-side JavaScript statements to the
HTML page. It then sends the resulting page over the network to the Navigator

client, which displays the results.

Chapter |, Introduction 51

JavaScript Objects

Figure 1.4 Server-side JavaScript during runtime.

Web file : <HTML><HEAD><TI TLE>Hangman</ Tl TLE></ >HEAD>
javaSFrlpt <BODY><H1> Hangman </ H1> Internet
(bytecode [~ runtime = |vou have used the fol | owi ng letters so far:
executable)| engine SAM
<FORM METHCD="post" ACTI ON="hangnan. ht m ">
<pP>

What is your guess?
<I NPUT TYPE="text" NAME="guess" SIZE="1">

</ BODY></ HTM.>

i Tl e e fedewii Dyerw [beckey lifwdom e
d Wit F 8 - o Y o s ey b _'J

Hangman

EEREEFER]

Tau v ol the Slrag lowr mEar DA H
ilar & paa -lﬂlr

| |

T b feove 13 pliy ML, pleoy ol 8

il | Domrend Do L

In contrast to standard Common Gateway Interface (CGD programs, all
JavaScript is integrated directly into HTML pages, facilitating rapid development
and easy maintenance. JavaScript’s Session Management Service contains
objects you can use to maintain data that persists across client requests,
multiple clients, and multiple applications. JavaScript’s LiveWire Database
Service provides objects for database access that serve as an interface to
Structured Query Language (SQL) database servers.

JavaScript Objects

JavaScript has predefined objects for the core language, as well as additions for
client-side and server-side JavaScript.

52 JavaScript Reference

JavaScript Objects

JavaScript has the following core objects:

Array , Boolean , Date , Function | Math, Number, Object , String
The additional client-side objects are as follows:

The objects available within the DOM are as follows:

Anchor | Applet , Area, Button , Checkbox , document , event | FileUpload
Form, Frame, Hidden , History , Image, Layer , Link , Location , MimeType,
navigator , Option , Password , Plugin , Radio , Reset , screen , Select ,
Submit , Text , Textarea , Window

)

These objects represent information relevant to working with JavaScript in a
web browser. Many of these objects are related to each other by occurring as
property values. For example, to access the images in a document, you use the
document.images array, each of whose elements is a Image object. Figure 1.5
shows the client-side object containment hierarchy.

Chapter |, Introduction 53

JavaScript Objects

Window

Frame

document

Layer

Link

Location

History

Window

Frame

document

Image

Area

Anchor

Applet

Plugin

Form

Figure 1.5 Containment relationships among client-side objects

Texturea

Text

FileUpload

Password

Hidden

Submit

Reset

Radio

Checkbox

Link

Location

History

Image

Area

Anchor

Applet

Plugin

N

Button

navigator

Plugin

MimeType

Select

Option

Texturea

Text

FileUpload

Password

Hidden

Submit

Reset

Radio

Checkbox

—I | » IR, I

navigator

Plugin

MimeType

Security

Security

The server-side objects are:

blob | client |, Connection , Cursor , database , DbPool , File | Lock , project
request , Resultset | SendMail |, server |, Stproc

)

As shown in Figure 1.6, some of the additional server-side objects also have a
containment hierarchy.

Figure 1.6 Containment relationships among LiveWire objects

Cursor
DbPool Connection
Stproc Resultset
Cursor
database
Stproc Resultset

Navigator version 2.02 and later automatically prevents scripts on one server
from accessing properties of documents on a different server. This restriction
prevents scripts from fetching private information such as directory structures
or user session history.

JavaScript for Navigator 3.0 has a feature called data tainting that retains the
security restriction but provides a means of secure access to specific
components on a page.

e When data tainting is enabled, JavaScript in one window can see properties
of another window, no matter what server the other window’s document
was loaded from. However, the author of the other window taints (marks)
property values or other data that should be secure or private, and
JavaScript cannot pass these tainted values on to any server without the
user’s permission.

Chapter |, Introduction 55

Security

56 JavaScript Reference

e When data tainting is disabled, a script cannot access any properties of a
window on another server.

In Navigator 4.0, data tainting has been removed. Instead, Navigator 4.0
provides signed JavaScript scripts for more reliable and more flexible security.

For information on data tainting and on signed scripts, see Chapter 7,
“JavaScript Security,” in the JavaScript Guide.

Chapter

Operators

JavaScript has assignment, comparison, arithmetic, bitwise, logical, string, and
special operators. This chapter describes the operators and contains
information about operator precedence.

Table 2.1 summarizes all of the JavaScript operators.

Table 2.1 JavaScript operators.

Operator Operator Description
Category
Arithmetic + (Addition) Adds 2 numbers.
Operators
++ (Increment) Adds one to a variable representing a number (returning either
the new or old value of the variable)
- (Unary negation, subtraction) As a unary operator, negates the value of its
argument. As a binary operator, subtracts 2 numbers.
- (Decrement) Subtracts one from a variable representing a number
(returning either the new or old value of the variable)
* (Multiplication) Multiplies 2 numbers.
/ (Division) Divides 2 numbers.
% (Modulus) Computes the integer remainder of dividing 2 numbers.
String + (String addition) Concatenates 2 strings.
Operators e

Concatenates 2 strings and assigns the result to the first operand.

Chapter 2, Operators 57

Table 2.1 JavaScript operators. (Continued)

Operator
Category

Operator

Description

Logical
Operators

Bitwise
Operators

&&

<<

>>

>>>

(Logical AND) Returns true if both logical operands are true. Otherwise,
returns false.

(Logical OR) Returns true if either logical expression is true. If both are
false, returns false.

(Logical negation) If its single operand is true, returns false; otherwise,
returns true.

(Bitwise AND) Returns a one in each bit position if bits of both operands
are ones.

(Bitwise XOR) Returns a one in a bit position if bits of one but not both
operands are one.

(Bitwise OR) Returns a one in a bit if bits of either operand is one.
(Bitwise NOT) Flips the bits of its operand.

(Left shift) Shifts its first operand in binary representation the number of bits
to the left specified in the second operand, shifting in zeros from the right.

(Sign-propagating right shift) Shifts the first operand in binary
representation the number of bits to the right specified in the second
operand, discarding bits shifted off.

(Zero-fill right shift) Shifts the first operand in binary representation the
number of bits to the right specified in the second operand, discarding bits
shifted off, and shifting in zeros from the left.

58 JavaScript Reference

Table 2.1 JavaScript operators. (Continued)

Operator Operator Description
Category
Assignment = Assigns the value of the second operand to the first operand.
Operators += Adds 2 numbers and assigns the result to the first.
-= Subtracts 2 numbers and assigns the result to the first.
*= Multiplies 2 numbers and assigns the result to the first.
I= Divides 2 numbers and assigns the result to the first.
%= Computes the modulus of 2 numbers and assigns the result to the first.
&= Performs a bitwise AND and assigns the result to the first operand.
n= Performs a bitwise XOR and assigns the result to the first operand.
= Performs a bitwise OR and assigns the result to the first operand.
<<= Performs a left shift and assigns the result to the first operand.
>>= Performs a sign-propagating right shift and assigns the result to the first
operand.
>>>= Performs a zero-fill right shift and assigns the result to the first operand.
Comparison == Returns true if the operands are equal.
Operators I= Returns true if the operands are not equal.
> Returns true if left operand is greater than right operand.
>= Returns true if left operand is greater than or equal to right operand.
< Returns true if left operand is less than right operand.
<= Returns true if left operand is less than or equal to right operand.

Chapter 2, Operators 59

Assignment Operators

Table 2.1 JavaScript operators. (Continued)

Operator Operator Description
Category
Special ?: Lets you perform a simple "if...then...else"
Operators
P ' Evaluates two expressions and returns the result of the second expression.
delete Lets you delete an object property or an element at a specified index in an
array.
new Lets you create an instance of a user-defined object type or of one of the
built-in object types.
this Keyword that you can use to refer to the current object.
typeof Returns a string indicating the type of the unevaluated operand.
void The void operator specifies an expression to be evaluated without returning

a value.

Assignment Operators

60 JavaScript Reference

An assignment operator assigns a value to its left operand based on the value of
its right operand.

Implemented in Navigator 2.0

The basic assignment operator is equal (=), which assigns the value of its right
operand to its left operand. That is, x = y assigns the value of y to x. The other
assignment operators are shorthand for standard operations, as shown in

Table 2.2.

Table 2.2 Assignment operators

Shorthand operator Meaning
X+=y X=X+y
X-=y X=x-y
X*=y X=X*y
X/=y x=xly

X %=y X=X%y

Table 2.2 Assignment operators

Shorthand operator Meaning
X <<=y X=X<<y
X>>=y X=X>>y
X>>>=y X=X>>>y
X&=y X=X&Y
X"=y X=x"y
X|=y X=x|y

Comparison Operators

Comparison Operators

A comparison operator compares its operands and returns a logical value based
on whether the comparison is true or not. The operands can be numerical or
string values. When used on string values, the comparisons are based on the
standard lexicographical ordering.

Implemented in Navigator 2.0

They are described in Table 2.3. In the examples in this table, assume varl has
been assigned the value 3 and var2 had been assigned the value 4.

Table 2.3 Comparison operators

Operator Description Examples returning true
Equal (== Returns true if the operands are equal. 3 ==varl

Not equal (I=) Returns true if the operands are not equal. varl!=4

Greater than (>) Returns true if left operand is greater than right var2 >varl

Greater than or equal

(>=)

Less than (<)

Less than or equal (<=)

operand.

Returns true if left operand is greater than or equal
to right operand.

Returns true if left operand is less than right
operand.

Returns true if left operand is less than or equal to
right operand.

var2 >=varl
varl >=3

varl < var2

varl <=var2
var2 <=5

Chapter 2, Operators 61

Arithmetic Operators

Arithmetic Operators

62 JavaScript Reference

Arithmetic operators take numerical values (either literals or variables) as their
operands and return a single numerical value. The standard arithmetic
operators are addition (+), subtraction (-), multiplication (*), and division (/).
These operators work as they do in other programming languages.

Implemented in Navigator 2.0

% (Modulus)

The modulus operator is used as follows:

varl % var2

The modulus operator returns the first operand modulo the second operand,
that is, varl modulo var2 | in the preceding statement, where varl and var2
are variables. The modulo function is the integer remainder of dividing varl by
var2 . For example, 12 % 5 returns 2.

++ (Increment)

The increment operator is used as follows:
var++ or ++var

This operator increments (adds one to) its operand and returns a value. If used
postfix, with operator after operand (for example, x++), then it returns the
value before incrementing. If used prefix with operator before operand (for
example, ++x), then it returns the value after incrementing.

For example, if x is three, then the statementy = x++ setsy to 3 and
increments x to 4. If x is 3, then the statement y = ++x increments X to 4 and
sets y to 4.

-- (Decrement)

The decrement operator is used as follows:

Bitwise Operators

var-- or --var

This operator decrements (subtracts one from) its operand and returns a value.
If used postfix (for example, x--), then it returns the value before decrementing.
If used prefix (for example, --x), then it returns the value after decrementing.

For example, if x is three, then the statementy = x-- setsy to 3 and
decrements x to 2. If x is 3, then the statementy = --x decrements x to 2 and
sets 'y to 2.

- (Unary Negation)

The unary negation operator precedes its operand and negates it. For example,
y = -x negates the value of x and assigns that to y; that is, if x were 3,y
would get the value -3 and x would retain the value 3.

Bitwise Operators

Bitwise operators treat their operands as a set of bits (zeros and ones), rather
than as decimal, hexadecimal, or octal numbers. For example, the decimal
number nine has a binary representation of 1001. Bitwise operators perform
their operations on such binary representations, but they return standard
JavaScript numerical values.

Table 2.4 summarizes JavaScript’s bitwise operators

Table 2.4 Bitwise operators

Operator Usage Description

Bitwise AND a&b Returns a one in each bit position if bits of
both operands are ones.

Bitwise OR alb Returns a one in a bit if bits of either
operand is one.

Bitwise XOR a”b Returns a one in a bit position if bits of one
but not both operands are one.

Bitwise NOT ~a Flips the bits of its operand.

Chapter 2, Operators 63

Bitwise Operators

64 JavaScript Reference

Table 2.4 Bitwise operators

Operator Usage

Description

Left shift a<<b

Sign-propagating right a>>b
shift

Zero-fill right shift a>>>b

Shifts @ in binary representation b bits to
left, shifting in zeros from the right.

Shifts a in binary representation b bits to
right, discarding bits shifted off.

Shifts a in binary representation b bits to
the right, discarding bits shifted off, and
shifting in zeros from the left.

Bitwise Logical Operators

Implemented in Navigator 2.0

Conceptually, the bitwise logical operators work as follows:

e The operands are converted to thirty-two-bit integers and expressed by a

series of bits (zeros and ones).

e Each bit in the first operand is paired with the corresponding bit in the
second operand: first bit to first bit, second bit to second bit, and so on.

e The operator is applied to each pair of bits, and the result is constructed

bitwise.

For example, the binary representation of nine is 1001, and the binary

representation of fifteen is 1111. So, when the bitwise operators are applied to

these values, the results are as follows:

e 15 & 9yields 9 (1111 & 1001 = 1001)

e 15| 9yields 15 (1111 | 1001 = 1111)

e 15 A 9yields 6 (1111 A 1001 = 0110)

Bitwise Operators

Bitwise Shift Operators

Implemented in Navigator 2.0

The bitwise shift operators take two operands: the first is a quantity to be
shifted, and the second specifies the number of bit positions by which the first
operand is to be shifted. The direction of the shift operation is controlled by the
operator used.

Shift operators convert their operands to thirty-two-bit integers and return a
result of the same type as the left operator.

<< (Left Shift)

This operator shifts the first operand the specified number of bits to the left.
Excess bits shifted off to the left are discarded. Zero bits are shifted in from the
right.

For example, 9<<2 yields thirty-six, because 1001 shifted two bits to the left
becomes 100100, which is thirty-six.

>> (Sign-Propagating Right Shift)

This operator shifts the first operand the specified number of bits to the right.
Excess bits shifted off to the right are discarded. Copies of the leftmost bit are
shifted in from the left.

For example, 9>>2 yields two, because 1001 shifted two bits to the right
becomes 10, which is two. Likewise, -9>>2 yields -3, because the sign is
preserved.

>>> (Zero-Fill Right Shift)

This operator shifts the first operand the specified number of bits to the right.
Excess bits shifted off to the right are discarded. Zero bits are shifted in from
the left.

For example, 19>>>2 yields four, because 10011 shifted two bits to the right
becomes 100, which is four. For non-negative numbers, zero-fill right shift and
sign-propagating right shift yield the same result.

Chapter 2, Operators 65

Logical Operators

Logical Operators

Logical operators take Boolean (logical) values as operands and return a
Boolean value.

Implemented in Navigator 2.0

They are described in Table 2.5.

Table 2.5 Logical operators

Operator Usage Description

and (&&) exprl && expr2 Returns exprl if it converts to false . Otherwise,
returns expr2 .

or (| D exprl || expr2 Returns exprl if it converts to true . Otherwise,
returns expr2 .

not (1) lexpr If expr is true, returns false; if expr is false,
returns true.

Examples Consider the following script:

<script language="JavaScriptl.2">"

vl ="Cat";
v2 ="Dog";
v3 = false;

document.writeln("t && t returns " + (v1 && v2));
document.writeIn("f && t returns " + (v3 && v1));
document.writeIn("t && f returns " + (v1 && v3));
document.writeIn("f && f returns " + (v3 && (3 == 4)));

document.writeln("t || t returns " + (v1 || v2));
document.writeIn(f || t returns " + (v3 || v1));
document.writeln("t || f returns " + (v1 || v3));
document.writeln("f || f returns " + (v3 || (3 == 4)));

document.writeIn("!t returns " + (v1));
document.writeIn("!f returns " + (v3));

</script>
This script displays the following:

t && t returns Dog
f && t returns false
t && f returns false

66 JavaScript Reference

String Operators

f && f returns false
t|] treturns Cat

f || t returns Cat

t || f returns Cat
|| f returns false
It returns false

If returns true

Short-Circuit Evaluation

As logical expressions are evaluated left to right, they are tested for possible
“short-circuit” evaluation using the following rules:

e false && anything is short-circuit evaluated to false.
e true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that
the anytbhing part of the above expressions is not evaluated, so any side effects
of doing so do not take effect.

String Operators

In addition to the comparison operators, which can be used on string values,
the concatenation operator (+) concatenates two string values together,
returning another string that is the union of the two operand strings. For
example, "my " + "string" returns the string "my string"

Implemented in Navigator 2.0
The shorthand assignment operator += can also be used to concatenate strings.
For example, if the variable mystring has the value “alpha,” then the

expression mystring += "bet" evaluates to “alphabet” and assigns this value
to mystring

Chapter 2, Operators 67

Special Operators

Special Operators

?: (Conditional operator)

The conditional operator is the only JavaScript operator that takes three
operands. This operator is frequently used as a shortcut for the if statement.

Implemented in Navigator 2.0

Syntax condition ? exprl : expr2
Parameters
condition an expression that evaluates to true or false

exprl, expr2 expressions with values of any type.

Description If condition is true , the operator returns the value of exprl ; otherwise, it
returns the value of expr2 . For example, to display a different message based
on the value of the isMember variable, you could use this statement:

document.write (“The fee is " + (isMember ? "$2.00" : "$10.00"))

, (Comma operator)

The comma operator is very simple. It evaluates both of its operands and
returns the value of the second operand.

Implemented in Navigator 2.0

Syntax exprl, expr2
Parameters
exprl, expr2 Any expressions
Description You can use the comma operator when you want to include multiple

expressions in a location that requires a single expression. The most common
usage of this operator is to supply multiple parameters in a for loop.

68 JavaScript Reference

Syntax

Parameters

Description

Syntax

Arguments

Special Operators

For example, if a is a 2-dimensional array with 10 elements on a side, the
following code uses the comma operator to increment two variables at once.
The code prints the values of the diagonal elements in the array:

for (var i=0, j=10; i <= 10; i++, j--)
document.writeln("a["+i+","+j+"]= " + a[i,j])

delete

Deletes an object's property or an element at a specified index in an array.
Implemented in Navigator 2.0
delete objectName.property

delete objectName[index]
delete property

objectName The name of an object.
property An existing property.
index An integer representing the location of an element in an array

The third form is legal only within a with statement.

If the deletion succeeds, the delete operator sets the property or element to
undefined . delete always returns undefined.

new

An operator that lets you create an instance of a user-defined object type or of
one of the built-in object types that has a constructor function.

Implemented in Navigator 2.0

objectName = new objectType (param1l [,param?2] ...[,paramN])

objectName Name of the new object instance.

Chapter 2, Operators 69

Special Operators

Description

Examples

70 JavaScript Reference

objectType Object type. It must be a function that defines an object type.

paraml...paramN Property values for the object. These properties are parameters
defined for the objectType function.

Creating a user-defined object type requires two steps:
I. Define the object type by writing a function.
2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its
name, properties, and methods. An object can have a property that is itself
another object. See the examples below.

You can always add a property to a previously defined object. For example, the
statement carl.color = "black" adds a property color to carl , and assigns
it a value of "black" . However, this does not affect any other objects. To add
the new property to all objects of the same type, you must add the property to
the definition of the car object type.

You can add a property to a previously defined object type by using the
Function.prototype property. This defines a property that is shared by all
objects created with that function, rather than by just one instance of the object
type. The following code adds a color property to all objects of type car , and
then assigns a value to the color property of the object carl . For more
information, see prototype

Car.prototype.color=null
carl.color="black"
birthday.description="The day you were born"

Example 1: object type and object instance. Suppose you want to create an
object type for cars. You want this type of object to be called car , and you
want it to have properties for make, model, and year. To do this, you would
write the following function:

function car(make, model, year) {
this.make = make
this.model = model
this.year = year

}

Now you can create an object called mycar as follows:

mycar = new car("Eagle", "Talon TSi", 1993)

Special Operators

This statement creates mycar and assigns it the specified values for its
properties. Then the value of mycar.make is the string "Eagle" , mycar.year is
the integer 1993, and so on.

You can create any number of car objects by calls to new. For example,

kenscar = new car("Nissan", "300ZX", 1992)

Example 2: object property that is itself another object. Suppose you
define an object called person as follows:

function person(name, age, sex) {
this.name = name
this.age = age
this.sex = sex

}

And then instantiate two new person objects as follows:

rand = new person("Rand McNally", 33, "M")
ken = new person("Ken Jones", 39, "M")

Then you can rewrite the definition of car to include an owner property that
takes a person object, as follows:

function car(make, model, year, owner) {
this.make = make;
this.model = model;
this.year = year;
this.owner = owner;

}

To instantiate the new objects, you then use the following:

carl = new car("Eagle", "Talon TSi", 1993, rand);
car2 = new car("Nissan", "300ZX", 1992, ken)

Instead of passing a literal string or integer value when creating the new
objects, the above statements pass the objects rand and ken as the parameters
for the owners. To find out the name of the owner of car2 | you can access the
following property:

car2.owner.name

Chapter 2, Operators 71

Special Operators

Syntax

Examples

72 JavaScript Reference

this

A keyword that you can use to refer to the current object. In general, in a
method this refers to the calling object.

Implemented in Navigator 2.0

this[.propertyName]

Suppose a function called validate ~ validates an object’s value property, given
the object and the high and low values:

function validate(obj, lowval, hival) {
if ((obj.value < lowval) || (obj.value > hival))
alert("Invalid Value!")

}

You could call validate in each form element’s onChange event handler,
using this to pass it the form element, as in the following example:

Enter a number between 18 and 99:
<INPUT TYPE = "text" NAME = "age" SIZE =3
onChange="validate(this, 18, 99)">

typeof

The typeof operator is used in either of the following ways:

1. typeof operand
2. typeof (operand)

The typeof operator returns a string indicating the type of the unevaluated
operand. operand is the string, variable, keyword, or object for which the type
is to be returned. The parentheses are optional.

Implemented in Navigator 3.0

Suppose you define the following variables:

var myFun = new Function("5+2")
var shape="round"

var size=1

var today=new Date()

Special Operators

The typeof operator returns the following results for these variables:

typeof myFun is object
typeof shape is string

typeof size is number

typeof today is object

typeof dontExist is undefined

For the keywords true and null | the typeof operator returns the following
results:

typeof true is boolean
typeof null is object

For a number or string, the typeof operator returns the following results:

typeof 62 is number
typeof ‘Hello world' is string

For property values, the typeof operator returns the type of value the property
contains:

typeof document.lastModified is string
typeof window.length is number
typeof Math.LN2 is number

For methods and functions, the typeof operator returns results as follows:

typeof blur is function

typeof eval is function
typeof parselnt is function
typeof shape.split is function

For predefined objects, the typeof operator returns results as follows:

typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function

void
The void operator is used in either of the following ways:

1. javascript:void (expression)
2. javascript:void expression

Chapter 2, Operators 73

Special Operators

74 JavaScript Reference

The void operator specifies an expression to be evaluated without returning a
value. expression is a JavaScript expression to evaluate. The parentheses
surrounding the expression are optional, but it is good style to use them.

Implemented in Navigator 3.0

You can use the void operator to specify an expression as a hypertext link.
The expression is evaluated but is not loaded in place of the current document.

The following code creates a hypertext link that does nothing when the user
clicks it. When the user clicks the link, void(0) evaluates to 0, but that has no
effect in JavaScript.

Click here to do nothing

The following code creates a hypertext link that submits a form when the user
clicks it.

Click here to submit

Chapter

Statements

This chapter describes all JavaScript statements. JavaScript statements consist of
keywords used with the appropriate syntax. A single statement may span
multiple lines. Multiple statements may occur on a single line if each statement
is separated by a semicolon.

Syntax conventions: All keywords in syntax statements are in bold. Words in
italics represent user-defined names or statements. Any portions enclosed in

square brackets, [], are optional. {statements} indicates a block of statements,
which can consist of a single statement or multiple statements delimited by a
curly braces { }.

Table 3.1 lists statements available in JavaScript.

Table 3.1 JavaScript statements.

break Statement that terminates the current while or for loop and
transfers program control to the statement following the terminated
loop.

comment Notations by the author to explain what a script does. Comments

are ignored by the interpreter.

continue Statement that terminates execution of the block of statements in a
while or for loop, and continues execution of the loop with the
next iteration.

delete Deletes an object’s property or an element of an array.

Chapter 3, Statements 75

Table 3.1 JavaScript statements. (Continued)

do...while

export

for

for...in

function

if...else

import

labeled

return

switch

var

while

with

Executes its statements until the test condition evaluates to false.
Statement is executed at least once.

Allows a signed script to provide properties, functions, and objects
to other signed or unsigned scripts.

Statement that creates a loop that consists of three optional
expressions, enclosed in parentheses and separated by semicolons,
followed by a block of statements executed in the loop.

Statement that iterates a specified variable over all the properties of
an object. For each distinct property, JavaScript executes the
specified statements.

Statement that declares a JavaScript function name with the

specified parameters. Acceptable parameters include strings,
numbers, and objects.

Statement that executes a set of statements if a specified condition
is true. If the condition is false, another set of statements can be
executed.

Allows a script to import properties, functions, and objects from a
signed script which has exported the information.

Provides an identifier that can be used with break or continue to
indicate where the program should continue execution.

Statement that specifies the value to be returned by a function.

Allows a program to evaluate an expression and attempt to match
the expression's value to a case label.

Statement that declares a variable, optionally initializing it to a
value.

Statement that creates a loop that evaluates an expression, and if it
is true, executes a block of statements.

Statement that establishes the default object for a set of statements.

76 JavaScript Reference

break

Syntax

Parameter

Description

Examples

break

Terminates the current while or for loop and transfers program control to the
statement following the terminated loop.

Implemented in Navigator 2.0, LiveWire 1.0

break
break label

label Identifier associated with the label of the statement.

The break statement can now include an optional label that allows the
program to break out of a labeled statement. This type of break must be in a
statement identified by the label used by break.

The statements in a labeled statement can be of any type.

The following function has a break statement that terminates the while loop
when e is 3, and then returns the value 3 * x.

function testBreak(x) {
vari=0
while (i < 6) {
if (i==23)
break
|++
}

return i*x

}

In the following example, a statement labeled checkiandj contains a statement
labeled checkj . If break is encountered, the program breaks out of the

checkj statement and continues with the remainder of the checkiand]
statement. If break had a label of checkiandj , the program would break out
of the checkiandj statement and continue at the statement following
checkiandj

checkiandj :
if (4==i) {
document.write("You've entered " + i + ".
");
checkj :
if (2==)) {
document.write("You've entered " + j + ".
");

Chapter 3, Statements 77

comment

break checkj;
document.write("The sum is " + (i+j) + ".
");

}

document.write(i + "-" + j + "=" + (i-]) + ".
");

}

See also labeled |, switch

comment

Notations by the author to explain what a script does. Comments are ignored
by the interpreter.

Implemented in Navigator 2.0, LiveWire 1.0

Syntax // comment text
/* multiple line comment text */

Description JavaScript supports Java-style comments:
e Comments on a single line are preceded by a double-slash (//).

e Comments that span multiple lines are preceded by a /* and followed by a

*/.

Examples // This is a single-line comment.
/* This is a multiple-line comment. It can be of any length, and
you can put whatever you want here. */

continue

Terminates execution of the block of statements in a while or for loop, and
continues execution of the loop with the next iteration.

Implemented in Navigator 2.0, LiveWire 1.0

Syntax continue
continue label

78 JavaScript Reference

Parameter

Description

Examples

continue

label Identifier associated with the label of the statement.

In contrast to the break statement, continue does not terminate the execution
of the loop entirely: instead,

e In a while loop, it jumps back to the condition

e Inafor loop, it jumps to the update expression.

The continue statement can now include an optional label that allows the
program to terminate execution of a labeled statement and continue to the
specified labeled statement. This type of continue must be in a looping
statement identified by the label used by continue

The following example shows a while loop that has a continue statement that
executes when the value of i is 3. Thus, n takes on the values 1, 3, 7, and 12.

i=0
n=0
while (i < 5) {
|++
if (i ==3)
continue
n+=i

}

In the following example, a statement labeled checkiandj contains a statement
labeled checkj . If continue is encountered, the program continues at the top
of the checkj statement. Each time continue is encountered, checki

reiterates until its condition returns false. When false is returned, the remainder
of the checkiandj statement is completed. checkiandj reiterates until its
condition returns false. When false is returned, the program continues at the
statement following checkiand.

If continue had a label of checkiandj , the program would continue at the top
of the checkiandj statement.

checkiandj :

while (i<4) {
document.write(i + "
");
i+=1;

checkj :
while (j>4) {
document.write(j + "
");

Chapter 3, Statements 79

delete

See also

delete

Syntax

Parameters

Description

80 JavaScript Reference

=1
if ((1%2)==0)

continue checkj;
document.write(j + " is odd.
");

}
document.write("i =" + i + "
");
document.write("j = " + j + "
");
}
labeled

Deletes an object’s property or an element at a specified index in an array.
Implemented in Navigator 4.0, Netscape Server 3.0
delete objectName.property

delete objectName][index]
delete property

objectName An object from which to delete the specified property or value.
property The property to delete.
index An integer index into an array.

If the delete operator succeeds, it sets the property of element to undefined
the operator always returns undefined

You can only use the delete operator to delete object properties and array
entries. You cannot use this operator to delete objects or variables.
Consequently, you can only use the third form within a with statement, to
delete a property from the object.

’

do...while

Syntax

Parameters

Example

export

Syntax

Parameters

do...while

Executes its statements until the test condition evaluates to false. Statement is
executed at least once.

Implemented in Navigator 4.0, Netscape Server 3.0

do
statement
while (condition);

statement Block of statements that is executed at least once and is re-executed
each time the condition evaluates to true.

condition Evaluated after each pass through the loop. If condition evaluates to
true, the statements in the preceding block are re-executed. When
condition evaluates to false, control passes to the statement
following do while

In the following example, the do loop iterates at least once and reiterates until i
is no longer less than 5.
do {
i+=1
document.write(i);
while (i<5);

Allows a signed script to provide properties, functions, and objects to other
signed or unsigned scripts.

Implemented in Navigator 4.0, Netscape Server 3.0

export namel, namez2, ..., nameN
export *

nameN List of properties, functions, and objects to be exported.

Chapter 3, Statements 81

for

Description

See also

for

Syntax

Parameters

Examples

82 JavaScript Reference

Exports all properties, functions, and objects from the script.

Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting properties, functions, or objects, a signed
script makes this information available to any script (signed or unsigned). The
receiving script uses the companion import statement to access the information.

import

Creates a loop that consists of three optional expressions, enclosed in
parentheses and separated by semicolons, followed by a block of statements
executed in the loop.

Implemented in Navigator 2.0, LiveWire 1.0

for ([initial-expression;] [condition;] [increment-expression])

statements

initial-expression Statement or variable declaration. Typically used to initialize a
counter variable. This expression may optionally declare new
variables with the var keyword.

condition Evaluated on each pass through the loop. If this condition
evaluates to true, the statements in statements are
performed. This conditional test is optional. If omitted, the
condition always evaluates to true.

increment-expression Generally used to update or increment the counter variable.

statements Block of statements that are executed as long as condition

evaluates to true. This can be a single statement or multiple
statements. Although not required, it is good practice to indent
these statements from the beginning of the for statement.

The following for statement starts by declaring the variable i and initializing it
to 0. It checks that i is less than nine, performs the two succeeding statements,
and increments i by 1 after each pass through the loop.

for...in

Syntax

Parameters

Examples

function

for (vari=0;i<9;i++) {
n+=i
myfunc(n)

Iterates a specified variable over all the properties of an object. For each
distinct property, JavaScript executes the specified statements.

Implemented in Navigator 2.0, LiveWire 1.0

for (variable in object) {

statements}
variable Variable to iterate over every property.
object Object for which the properties are iterated.

statements Specifies the statements to execute for each property.

for...in

The following function takes as its argument an object and the object’s name. It
then iterates over all the object’s properties and returns a string that lists the

property names and their values.

function dump_props(obj, objName) {

var result ="
for (var i in obj) {

result += objName + "." + i+ " =" + obj[i] + "
"
}

result += "<HR>"
return result

Declares a JavaScript function with the specified parameters. Acceptable
parameters include strings, numbers, and objects.

Implemented in Navigator 2.0, LiveWire 1.0

Chapter 3, Statements 83

if...else

Syntax

Parameters

Description

Examples

if...else

Syntax

84 JavaScript Reference

function name([param] [, param] [..., param]) {
statements}

name The function name.

param The name of an argument to be passed to the function. A function can have up
to 255 arguments.

To return a value, the function must have a return statement that specifies the
value to return. You cannot nest a function statement in another statement or in
itself.

All parameters are passed to functions, by value. In other words, the value is
passed to the function, but if the function changes the value of the parameter,
this change is not reflected globally or in the calling function.

In addition to defining functions as described here, you can also define
Function objects.

/[This function returns the total dollar amount of sales, when
/lgiven the number of units sold of products a, b, and c.
function calc_sales(units_a, units_b, units_c) {

return units_a*79 + units_b*129 + units_c*699

}

Executes a set of statements if a specified condition is true. If the condition is
false, another set of statements can be executed.

Implemented in Navigator 2.0, LiveWire 1.0

if (condition) {
statements1}

[else {
statements2}]

Parameters

Examples

import

Syntax

Parameters

Description

import

condition Can be any JavaScript expression that evaluates to true or false.
Parentheses are required around the condition. If condition evaluates to
true, the statements in statementsl are executed.

statements1 Can be any JavaScript statements, including further nested if
statements2 statements. Multiple statements must be enclosed in braces.

if (cipher_char == from_char) {
result = result + to_char
X++}

else
result = result + clear_char

Allows a script to import properties, functions, and objects from a signed script
which has exported the information.

Implemented in Navigator 4.0, Netscape Server 3.0

import objectName.namel, objectName.name2, ..., objectName.nameN
import objectName.*

nameN List of properties, functions, and objects to import from the export file.
objectName Name of the object that will receive the imported names.

* imports all properties, functions, and objects from the export script.

The objectName parameter is the name of the object that will receive the
imported names. For example, if f and p have been exported, and if obj is an
object from the importing script, then

import obj.f, obj.p

makes f and p accessible in the importing script as properties of obj .

Chapter 3, Statements 85

labeled

See also

labeled

Syntax

Parameter

Example

See also

86 JavaScript Reference

Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting (using the export statement) properties,
functions, or objects, a signed script makes this information available to any
script (signed or unsigned). The receiving script uses the import statement to
access the information.

The script must load the export script into a window, frame, or layer before it
can import and use any exported properties, functions, and objects.

export

Provides an identifier that can be used with break or continue to indicate
where the program should continue execution.

Implemented in Navigator 4.0, Netscape Server 3.0
In a labeled statement, break or continue must be followed with a label, and

the label must be the identifier of the labeled statement containing break or
continue

label :
statement
statement Block of statements. break can be used with any labeled statement, and

continue can be used with looping labeled statements.

For an example of a labeled statement using break , see break . For an example
of a labeled statement using continue , see continue

break , continue

return

Syntax

Parameters

Examples

switch

Syntax

Parameters

Specifies the value to be returned by a function.

Implemented in Navigator 2.0, LiveWire 1.0

return expression

expression The expression to return.

The following function returns the square of its argument, x, where X is a
number.

function square(x) {
return x * x

}

Allows a program to evaluate an expression and attempt to match the
expression's value to a case label.

Implemented in Navigator 4.0, Netscape Server 3.0

switch (expression){
case label :
statement;
break;
case label :
statement;
break;

default : statement;

}

expression Value matched against label.

label Identifier used to match against expression.
statement Any statement.

return

Chapter 3, Statements 87

var

Description

Example

var

Syntax

88 JavaScript Reference

If a match is found, the program executes the associated statement.

The program first looks for a label matching the value of expression and then

executes the associated statement. If no matching label is found, the program

looks for the optional default statement, and if found, executes the associated
statement. If no default statement is found, the program continues execution at
the statement following the end of switch

The optional break statement associated with each case label ensures that the
program breaks out of switch once the matched statement is executed and
continues execution at the statement following switch. If break is omitted, the
program continues execution at the next statement in the switch statement.

In the following example, if expression evaluates to "Bananas," the program
matches the value with case "Bananas" and executes the associated statement.
When break is encountered, the program breaks out of switch and executes
the statement following switch . If break were omitted, the statement for case
"Cherries" would also be executed.

switch (i) {

case "Oranges" :
document.write("Oranges are $0.59 a pound.
");
break;

case "Apples" :
document.write("Apples are $0.32 a pound.
");
break;

case "Bananas" :
document.write("Bananas are $0.48 a pound.
");
break;

case "Cherries" :
document.write("Cherries are $3.00 a pound.
");
break;

default :
document.write("Sorry, we are out of " + i + ".
");

}

document.write("ls there anything else you'd like?
");

Declares a variable, optionally initializing it to a value.

Implemented in Navigator 2.0, LiveWire 1.0

var varname [= value] [..., varname [= value]]

Parameters

Description

Examples

while

Syntax

Parameters

Examples

while

varname Variable name. It can be any legal identifier.

value Initial value of the variable and can be any legal expression.

The scope of a variable is the current function or, for variables declared outside
a function, the current application.

Using var outside a function is optional; you can declare a variable by simply
assigning it a value. However, it is good style to use var , and it is necessary in
functions if a global variable of the same name exists.

var num_hits =0, cust_no =0

Creates a loop that evaluates an expression, and if it is true, executes a block of
statements. The loop then repeats, as long as the specified condition is true.

Implemented in Navigator 2.0, LiveWire 1.0

while (condition) {

statements
}
condition Evaluated before each pass through the loop. If this condition evaluates
to true, the statements in the succeeding block are performed. When
condition evaluates to false, execution continues with the statement
following statements
statements Block of statements that are executed as long as the condition evaluates

to true. Although not required, it is good practice to indent these
statements from the beginning of the statement.

The following while loop iterates as long as n is less than three.

n=0

x=0

while(n < 3) {
n++

Chapter 3, Statements 89

with

X+=n

}

Each iteration, the loop increments n and adds it to x. Therefore, x and n take
on the following values:

e After the first pass: n=1and x = 1
e After the second pass: n =2 and x = 3
e After the third pass: n=3 and x =6

After completing the third pass, the condition n<3 is no longer true, so the
loop terminates.

with
Establishes the default object for a set of statements. Within the set of

statements, any property references that do not specify an object are assumed
to be for the default object.

Implemented in Navigator 2.0, LiveWire 1.0

Syntax with (object){

statements
}
Parameters
object Specifies the default object to use for the statements. The parentheses
around object are required.
statements Any block of statements.

Examples The following with statement specifies that the Math object is the default
object. The statements following the with statement refer to the Pl property
and the cos and sin methods, without specifying an object. JavaScript assumes
the Math object for these references.

var a, X, y

var r=10

with (Math) {
a=Pl*r*r
X =r* cos(Pl)

90 JavaScript Reference

with

y =r *sin(P1/2)

Chapter 3, Statements 91

with

92 JavaScript Reference

Chapter

Core

This chapter includes the JavaScript core objects Array , Boolean , Date ,

Function

, Math ; Number, Object , and String . These objects are used in both

client-side and server-side JavaScript.

Table 4.1 summarizes the objects in this chapter.

Table 4.1 Core objects

Object Description

Array Represents an array.

Boolean Represents a Boolean value.

Date Represents a date.

Function Specifies a string of JavaScript code to be compiled as a function.

Math Provides basic math constants and functions; for example, its PI
property contains the value of pi.

Number Represents primitive numeric values.

Object Contains the base functionality shared by all JavaScript objects.

RegExp Represents a regular expression; also contains static properties that
are shared among all regular expression objects.

String Represents a JavaScript string.

Chapter 4, Core 93

Array

Array

Created by

Parameters

Description

94 JavaScript Reference

Represents an array of elements.

Core object

Implemented in Navigator 3.0, LiveWire 1.0

The Array object constructor:

new Array(arrayLength);
new Array(elementO, elementl, ..., element N);

arrayLength (Optional) The initial length of the array. You can access this value
using the length property.

element N (Optional) A list of values for the array’s elements. When this form is
specified, the array is initialized with the specified values as its
elements, and the array’s length property is set to the number of
arguments.

In Navigator 3.0, you can specify an initial length when you create the array.
The following code creates an array of five elements:

billingMethod = new Array(5)

When you create an array, all of its elements are initially null. The following
code creates an array of 25 elements, then assigns values to the first three
elements:

musicTypes = new Array(25)
musicTypes[0] = "R&B"
musicTypes[1] = "Blues"
musicTypes[2] = "Jazz"

However, in Navigator 4.0, if you specify LANGUAGE="JavaScriptl.2" in the
<SCRIPT> tag, using new Array(1) creates a new array with a[0]=1

An array’s length increases if you assign a value to an element higher than the
current length of the array. The following code creates an array of length 0,
then assigns a value to element 99. This changes the length of the array to 100.

colors = new Array()
colors[99] = "midnightblue"

Array

You can construct a dense array of two or more elements starting with index 0
if you define initial values for all elements. A dense array is one in which each
element has a value. The following code creates a dense array with three
elements:

myArray = new Array("Hello", myVar, 3.14159)

In Navigator 2.0, you must index an array by its ordinal number, for example
document.forms[0] . In Navigator 3.0 and later, you can index an array by
either its ordinal number or by its name (if defined). For example, assume you
define the following array:

myArray = new Array("Wind","Rain","Fire")

You can then refer to the first element of the array as myArray[0] or
myArray["Wind"]

In Navigator 4.0, the result of a match between a regular expression and a
string can create an array. This array has properties and elements that provide
information about the match. An array is the return value of RegExp.exec
String.match , and String.replace . To help explain these properties and
elements, look at the following example and then refer to the table below:

<SCRIPT LANGUAGE="JavaScript1.2">

/IMatch one d followed by one or more b's followed by one d
//[Remember matched b's and the following d

/lignore case

myRe=/d(b+)(d)/i;
myArray = myRe.exec("cdbBdbsbz");

</SCRIPT>

The properties and elements returned from this match are as follows:

Property/Element Description Example

input A read-only property that reflects the cdbBdbsbz
original string against which the regular
expression was matched.

index A read-only property that is the zero-based 1
index of the match in the string.

Chapter 4, Core 95

Array

Property/Element Description Example

[0] A read-only element that specifies the last dbBd
matched characters.

[1], ...[n] Read-only elements that specify the [1]=bB
parenthesized substring matches, if (2]=d

included in the regular expression. The
number of possible parenthesized
substrings is unlimited.

Property
Summary

Property Description

index For an array created by a regular expression match, the zero-based
index of the match in the string.

input For an array created by a regular expression match, reflects the
original string against which the regular expression was matched.

length Reflects the number of elements in an array
prototype Allows the addition of properties to an Array object.
Method Summary
Method Description
concat Joins two arrays and returns a new array.
join Joins all elements of an array into a string.
pop Removes the last element from an array and returns that element.
push Adds one or more elements to the end of an array and returns that last

element added.

reverse Transposes the elements of an array: the first array element becomes
the last and the last becomes the first.

shift Removes the first element from an array and returns that element
slice Extracts a section of an array and returns a new array.

splice Adds and/or removes elements from an array.

sort Sorts the elements of an array.

96 JavaScript Reference

Examples

See also

Array

Method Description

toStrin Returns a string representing the specified object.

g

unshift Adds one or more elements to the front of an array and returns the

new length of the array.

Example 1. The following example creates an array, msgArray , with a length
of 0, then assigns values to msgArray[0] and msgArray[99] , changing the
length of the array to 100.

msgArray = new Array()

msgArray [0] = "Hello"

msgArray [99] = "world"

/I The following statement is true,

/I because defined msgArray [99] element.

if (msgArray .length == 100)
document.write("The length is 100.")

See also examples for onError

Example 2: Two-dimensional array. The following code creates a two-
dimensional array and displays the results.

a = new Array(4)
for (i=0; i < 4; i++) {
afi] = new Array(4)
for (j=0; j < 4; j++) {
alil] = [+ T
}
}
for (i=0; i < 4; i++) {
str = "Row "+i+""
for (j=0; j < 4; j++) {
str += a[i][j]
}
document.write(str,"<p>")

}

This example displays the following results:

Multidimensional array test
Row 0:[0,0][0,1][0,2][0,3]
Row 1:[1,0][1,1][1,2][1,3]
Row 2:[2,0][2,1][2,2][2,3]
Row 3:[3,0][3,1][3,2][3,3]

Image

Chapter 4, Core 97

Array

Examples

98 JavaScript Reference

Properties

index

For an array created by a regular expression match, the zero-based index of the
match in the string.

Property of Array

Static

Implemented in Navigator 4.0, Netscape Server 3.0
input

For an array created by a regular expression match, reflects the original string
against which the regular expression was matched.

Property of Array

Static

Implemented in Navigator 4.0, Netscape Server 3.0
length

An integer that specifies the number of elements in an array. You can set the
length property to truncate an array at any time. You cannot extend an array;
for example, if you set length to 3 when it is currently 2, the array will still
contain only 2 elements.

Property of Array
Implemented in Navigator 3.0, LiveWire 1.0

In the following example, the getChoice function uses the length property to
iterate over every element in the musicType array. musicType is a select
element on the musicForm form.

function getChoice() {
for (var i = 0; i < document.musicForm.musicType.length; i++) {
if (document.musicForm.musicType.options[i].selected == true) {
return document.musicForm.musicType.options[i].text

}

Syntax

Parameters

Description

Array

}

The following example shortens the array statesUS to a length of 50 if the
current length is greater than 50.

if (statesUS.length > 50) {

statesUS.length=50

alert("The U.S. has only 50 states. New length is " +
statesUS.length)
}

prototype
Represents the prototype for this class. You can use the prototype to add

properties or methods to all instances of a class. For information on prototypes,
see Function.prototype

Property of Array
Implemented in Navigator 3.0, LiveWire 1.0

Methods

concat

Joins two arrays and returns a new array.

Method of Array

Implemented in Navigator 4.0, Netscape Server 3.0
concat(arrayName2)

arrayName?2 Name of the array to concatenate to this array.

concat does not alter the original arrays, but returns a “one level deep” copy
that contains copies of the same elements combined from the original arrays.
Elements of the original arrays are copied into the new array as follows:

Chapter 4, Core 99

Array

Syntax

Parameters

Description

Examples

See also

100 JavaScript Reference

e Object references (and not the actual object) -- concat copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

e Strings and numbers (not String and Number objects)-- concat copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other arrays.

If a new element is added to either array, the other array is not affected.
join
Joins all elements of an array into a string.

Method of Array
Implemented in Navigator 3.0, LiveWire 1.0

join(separator)

separator Specifies a string to separate each element of the array. The separator is
converted to a string if necessary. If omitted, the array elements are
separated with a comma.

The string conversion of all array elements are joined into one string.