
World Wide Web

ww
Perso

ore

y

merchant system
ML

Int

server
security

ne

URL

HT

r

na
community system

Li

Mozill

Publis

Chat

encryp

SS
TCP/IP

nal

ISt

Prox

HT

Inte

vigator

a

hing

L

JavaScript Reference

December 12, 1997
comp.sys
directory server

http://www
ernet

ws

ML

mail

electronic commerce

veScript Proxycertificate

Publishing

tion

secure sockets layer

ms
ware is

ly allow

ay be
t be

 in

F

s of
ity
uct or

mputer
ata and
/

Netscape Communications Corporation ("Netscape") and its licensors retain all ownership rights to the software progra
offered by Netscape (referred to herein as "Netscape Software") and related documentation. Use of the Netscape Soft
governed by the license agreement accompanying such Netscape Software. The Netscape Software source code is a
confidential trade secret of Netscape and you may not attempt to decipher or decompile Netscape Software or knowing
others to do so. Information necessary to achieve the interoperability of the Netscape Software with other programs m
obtained from Netscape upon request. Netscape Software and its documentation may not be sublicensed and may no
transferred without the prior written consent of Netscape.

Your right to copy Netscape Software and this documentation is limited by copyright law. Making unauthorized copies,
adaptations, or compilation works (except for archival purposes or as an essential step in the utilization of the program
conjunction with certain equipment) is prohibited and constitutes a punishable violation of the law.

THIS DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. IN NO EVENT SHALL
NETSCAPE BE LIABLE FOR ANY LOSS OF PROFITS, LOSS OF BUSINESS, LOSS OF USE OR DATA,
INTERRUPTION OF BUSINESS, OR FOR INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES O
ANY KIND, ARISING FROM ANY ERROR IN THIS DOCUMENTATION.

Netscape may revise this documentation from time to time without notice.

Copyright © 1995-97 Netscape Communications Corporation. All rights reserved.

Netscape Communications, the Netscape Communications logo, Netscape, and Netscape News Server are trademark
Netscape Communications Corporation. The Netscape Software includes software developed by Rich Salz, and secur
software from RSA Data Security, Inc. Copyright © 1994, 1995 RSA Data Security, Inc. All rights reserved. Other prod
brand names are trademarks or registered trademarks of their respective companies.

Any provision of Netscape Software to the U.S. Government is with "Restricted rights" as follows: Use, duplication or
disclosure by the Government is subject to restrictions set forth in subparagraphs (a) through (d) of the Commercial Co
Restricted Rights clause at FAR 52.227-19 when applicable, or in subparagraph (c) (1) (ii) of the Rights in Technical D
Computer Software clause at DFARS 252.227-7013, and in similar clauses in the NASA FAR Supplement. Contractor
manufacturer is Netscape Communications Corporation, 501 East Middlefield Road, Mountain View, California 94043.

You may not export the Software except in compliance with applicable export controls. In particular, if the Software is
identified as not for export, then you may not export the Software outside the United States except in very limited
circumstances. See the end user license agreement accompanying the Software for more details.

 .

©Netscape Communications Corporation 1997
All Rights Reserved

Printed in USA
97 96 95 10 9 8 7 6 5 4 3 2 1

Netscape Communications Corporation 501 East Middlefield Road, Mountain View, CA 94043

Recycled and Recyclable Paper

Contents
What’s in this Reference ... i

This reference is organized around the functionality of the JavaScript
language. Sometimes you already know the name of an object or
method, but don’t know precisely where to look for it. This chapter
contains tables of links to aid in this situation.

Getting Started ... xliii

This book is a reference manual for the JavaScript language, includ-
ing objects in the core language and both client-side and server-side
extensions. JavaScript is Netscape’s cross-platform, object-based
scripting language for client and server applications.

What You Should Already Know .. xliii

Where to Find JavaScript Information ...xliv

Document Conventions ...xlv

Chapter 1 Introduction ..47

This chapter briefly introduces JavaScript, Netscape’s cross-platform,
JavaScript Reference iii

object-based scripting language for client and server applications.

Client-Side JavaScript .. 49

Server-Side JavaScript ... 50

JavaScript Objects ... 52

Security .. 55

Chapter 2 Operators ... 57

JavaScript has assignment, comparison, arithmetic, bitwise, logical,
string, and special operators. This chapter describes the operators and
contains information about operator precedence.

Assignment Operators .. 60

Comparison Operators ... 61

Arithmetic Operators .. 62

% (Modulus) ... 62

++ (Increment) ... 62

-- (Decrement) ... 62

- (Unary Negation) ... 63

Bitwise Operators ... 63

Bitwise Logical Operators ... 64

Bitwise Shift Operators .. 65

Logical Operators ... 66

Short-Circuit Evaluation ... 67

String Operators .. 67

Special Operators ... 68

?: (Conditional operator) ... 68

, (Comma operator) ... 68

delete .. 69

new ... 69

this .. 72

typeof ... 72

void ... 73

Chapter 3 Statements .. 75

This chapter describes all JavaScript statements. JavaScript statements
iv JavaScript Reference

consist of keywords used with the appropriate syntax. A single state-
ment may span multiple lines. Multiple statements may occur on a
single line if each statement is separated by a semicolon.

break ... 77

comment ... 78

continue .. 78

delete ... 80

do...while .. 81

export .. 81

for .. 82

for...in .. 83

function ... 83

if...else ... 84

import .. 85

labeled ... 86

return ... 87

switch .. 87

var .. 88

while .. 89

with ... 90

Chapter 4 Core .. 93

This chapter includes the JavaScript core objects Array , Boolean ,
Date , Function , Math , Number, Object , and String . These objects
are used in both client-side and server-side JavaScript.

Array .. 94

Properties ... 98

Methods .. 99

Boolean ... 111

Properties ... 112

Methods .. 112

Date ... 113

Properties ... 115

Methods .. 116
JavaScript Reference v

Function .. 127

Properties ... 130

Methods .. 136

Math .. 137

Properties ... 139

Methods .. 142

Number ... 155

Properties ... 156

Methods .. 160

Object .. 161

Properties ... 162

Methods .. 163

String ... 171

Properties ... 174

Methods .. 175

RegExp .. 201

Properties ... 208

Methods .. 215

Chapter 5 Document ... 221

This chapter deals with the document and its associated objects, doc-

ument , Layer , Link , Anchor , Area , Image , and Applet .

document .. 222

Properties ... 226

Methods .. 240

Link ... 250

Properties ... 255

Methods .. 261

Area ... 261

Anchor ... 262

Image .. 264

Properties ... 270

Methods .. 276

Applet .. 276
vi JavaScript Reference

Layer .. 277

Properties ... 280

Methods .. 287

Chapter 6 Window ... 293

This chapter deals with the Window object and the client-side objects
associated with it: Frame , Location , and History .

Window ... 294

Properties ... 302

Methods .. 317

Frame .. 344

Location ... 344

Properties ... 349

Methods .. 358

History ... 361

Properties ... 363

Methods .. 365

screen .. 366

Properties ... 366

Chapter 7 Form ... 367

This chapter deals with the use of forms, which appear within a doc-
ument to obtain input from the user.

Form .. 368

Properties ... 372

Methods .. 375

Hidden .. 378

Properties ... 379

Text ... 382

Properties ... 384

Methods .. 388

Textarea ... 390

Properties ... 393

Methods .. 397
JavaScript Reference vii

Password ... 399

Properties ... 401

Methods .. 404

FileUpload ... 406

Properties ... 408

Methods .. 408

Button ... 409

Properties ... 410

Methods .. 414

Submit ... 416

Properties ... 418

Methods .. 421

Reset .. 423

Properties ... 426

Methods .. 427

Radio ... 428

Properties ... 431

Methods .. 436

Checkbox .. 437

Properties ... 440

Methods .. 443

Select ... 444

Properties ... 449

Methods .. 454

Option ... 455

Properties ... 458

Chapter 8 Browser ... 461

This chapter deals with the browser and elements associated with it.

navigator ... 461

Properties ... 463

Methods .. 468

MimeType ... 470

Properties ... 472
viii JavaScript Reference

Plugin .. 474

Properties ... 477

Chapter 9 Events and Event Handlers .. 479

This chapter contains the event object and the event handlers that are
used with client-side objects in JavaScript to evoke particular actions.
In addition, it contains general information about using events and
event handlers.

General Information about Events .. 481

Defining Event Handlers ... 481

Events in Navigator 4.0 .. 482

event .. 485

onAbort ... 487

onBlur ... 488

onChange .. 490

onClick .. 491

onDblClick .. 493

onDragDrop .. 494

onError .. 495

onFocus ... 499

onKeyDown .. 500

onKeyPress .. 501

onKeyUp ... 502

onLoad .. 503

onMouseDown ... 506

onMouseMove .. 507

onMouseOut ... 508

onMouseOver ... 509

onMouseUp ... 510

onMove ... 511

onReset .. 512

onResize .. 513

onSelect ... 513

onSubmit ... 514
JavaScript Reference ix

onUnload .. 515

Chapter 10 LiveWire Database Service ... 517

This chapter contains the server-side objects associated with LiveWire:
database , DbPool , Connection , Cursor , Stproc , Resultset and
blob .

database .. 518

Transactions ... 520

Properties ... 521

Methods .. 521

DbPool .. 542

Properties ... 544

Methods .. 545

Connection .. 560

Properties ... 561

Methods .. 561

Cursor .. 578

Properties ... 580

Methods .. 582

Stproc .. 590

Properties ... 591

Methods .. 591

Resultset .. 594

Properties ... 597

Methods .. 597

blob ... 601

Methods .. 601

Chapter 11 Session Management Service .. 605

This chapter contains those server-side objects associated with manag-
ing a session, including request , client , project , server , and
Lock .

request .. 606

Properties ... 608

client .. 613
x JavaScript Reference

Properties ... 615

Methods .. 616

project ... 617

Properties ... 619

Methods .. 619

server ... 620

Properties ... 622

Methods .. 624

Lock ... 625

Methods .. 625

Chapter 12 Utilities .. 629

This chapter contains the server-side objects File and SendMail .

File ... 629

Properties ... 632

Methods .. 632

SendMail .. 650

Properties ... 652

Methods .. 655

Chapter 13 Global Functions ... 657

This chapter contains all JavaScript functions not associated with any
object.

addClient ... 659

addResponseHeader ... 660

blob ... 661

callC ... 662

debug .. 663

deleteResponseHeader ... 663

escape ... 664

eval .. 665

flush ... 667

getOptionValue ... 668

getOptionValueCount ... 669
JavaScript Reference xi

isNaN ... 670

Number ... 670

parseFloat .. 671

parseInt ... 672

redirect .. 674

registerCFunction .. 675

ssjs_generateClientID ... 676

ssjs_getCGIVariable .. 676

ssjs_getClientID ... 678

String ... 679

taint ... 680

unescape ... 681

untaint ... 682

write .. 683

Chapter 14 Java packages for LiveConnect 685

netscape.javascript.JSObject ... 685

Methods and static methods .. 687

netscape.javascript.JSException ... 689

Constructors ... 689

netscape.plugin.Plugin ... 690

Constructors and methods ... 691

Index ... 695
xii JavaScript Reference

What’s in this Reference
This reference is organized around the functionality of the JavaScript language.
Sometimes you already know the name of an object or method, but don’t
know precisely where to look for it. This chapter contains tables of links to aid
in this situation.

Table 1, “Operators,” is a list of all JavaScript operators, grouped by type of
operator.

Table 2, “Statements,” is an alphabetical list of all JavaScript statements.

Table 3, “Objects with their methods and properties,” is an alphabetical list of
all of JavaScript’s predefined classes and objects. The predefined methods and
properties for each object are listed.

Table 4, “Methods,” is an alphabetical list of all predefined methods, regardless
of the object to which they belong. The second column indicates the object
with which the method is associated. There are separate entries for methods of
the same name used in different objects. Each method name links to the
method in the indicated object.

Similarly, Table 5, “Properties,” is an alphabetical list of all predefined
properties, regardless of the object to which they belong. The second column
indicates the object with which the property is associated.

Table 6, “Global functions,” is an alphabetical list of JavaScript’s global
functions. These are functions which aren’t associated with any object.

Table 7, “Event handlers,” is an alphabetical list of all JavaScript event handlers.

Key to the versions

If there is an entry in both the Client Version and the Server Version columns
for a single construct, that construct is part of the core language. Otherwise, it
is defined only for the client or for the server, as indicated.

The version number indicates the versions of Netscape Navigator (Nav),
LiveWire (LW), or the Netscape servers (Svr), such as Enterprise Server and
FastTrack Server), for which the construct is defined.
What’s in this Reference i

• A plus sign after a version number (as in Nav 3+) indicates that the
construct is defined for that version and all later versions (In the case of
server constructs, LW 1+ indicates the construct was defined for
LiveWire 1.0 and continues to be defined in Netscape 3.x servers.)

• If there is no plus sign (Nav 3) or there is a range (Nav 2-3), the construct
was only defined for the named releases.

• A construct that has existed for more than one release may have had
changes between releases. For this information, see the entry for the
construct.

Table 1 Operators

Operator
Category

Operator Client
version

Server
version

Arithmetic
Operators

+ Nav 2 LW 1

++ Nav 2 LW 1

- Nav 2 LW 1

-- Nav 2 LW 1

* Nav 2 LW 1

/ Nav 2 LW 1

% Nav 2 LW 1

String
Operators

+ Nav 2 LW 1

+= Nav 2 LW 1

Logical
Operators

&& Nav 2 LW 1

|| Nav 2 LW 1

! Nav 2 LW 1
ii JavaScript Reference

Bitwise
Operators

& Nav 2 LW 1

^ Nav 2 LW 1

| Nav 2 LW 1

~ Nav 2 LW 1

<< Nav 2 LW 1

>> Nav 2 LW 1

>>> Nav 2 LW 1

Assignment
Operators

= Nav 2 LW 1

+= Nav 2 LW 1

-= Nav 2 LW 1

*= Nav 2 LW 1

/= Nav 2 LW 1

%= Nav 2 LW 1

&= Nav 2 LW 1

^= Nav 2 LW 1

|= Nav 2 LW 1

<<= Nav 2 LW 1

>>= Nav 2 LW 1

>>>= Nav 2 LW 1

Comparison
Operators

== Nav 2 LW 1

!= Nav 2 LW 1

> Nav 2 LW 1

>= Nav 2 LW 1

< Nav 2 LW 1

<= Nav 2 LW 1

Table 1 Operators (Continued)

Operator
Category

Operator Client
version

Server
version
What’s in this Reference iii

Special
Operators

?: Nav 2 LW 1

, Nav 2 LW 1

delete Nav 2 LW 1

new Nav 2 LW 1

this Nav 2 LW 1

typeof Nav 3 LW 1

void Nav 3 LW 1

Table 2 Statements

Statement Client
version

Server
version

break Nav 2+ LW 1+

comment Nav 2+ LW 1+

continue Nav 2+ LW 1+

delete Nav 4 Svr 3

do...while Nav 4 Svr 3

export Nav 4 Svr 3

for Nav 2+ LW 1+

for...in Nav 2+ LW 1+

function Nav 2+ LW 1+

if...else Nav 2+ LW 1+

import Nav 4 Svr 3

labeled Nav 4 Svr 3

return Nav 2+ LW 1+

switch Nav 4 Svr 3

Table 1 Operators (Continued)

Operator
Category

Operator Client
version

Server
version
iv JavaScript Reference

wn

var Nav 2+ LW 1+

while Nav 2+ LW 1+

with Nav 2+ LW 1+

Table 2 Statements (Continued)

Statement Client
version

Server
version

Table 3 Objects with their methods and properties

Object Client
version

Server
version

Methods Properties Event
handlers

Anchor Nav 2+

Applet Nav 3+

Area
(see Link)

Nav 3+

Array Nav 3+
(2 as
non-
object)

LW 1+ concat
join
pop
push
reverse
shift
slice
splice
sort
toString
unshift

index
input
length
prototype

blob LW 1+ blobImage
blobLink

Boolean Nav 3+ LW 1+ toString prototype

Button Nav 2+ blur
click
focus
handleEvent

form
name
type
value

onBlur
onClick
onFocus
onMouseDo
onMouseUp
What’s in this Reference v

Checkbox Nav 2+ blur
click
focus
handleEvent

checked
defaultChecked
form
name
type
value

onBlur
onClick
onFocus

client LW 1+ destroy
expiration

Connection Svr 3 beginTransaction
commitTransaction
connected
cursor
execute
majorErrorCode
majorErrorMessage
minorErrorCode
minorErrorMessage
release
rollbackTransaction
SQLTable
storedProc
toString

prototype

Cursor LW 1+ close
columnName
columns
deleteRow
insertRow
next
updateRow

cursorColumn
prototype

Table 3 Objects with their methods and properties (Continued)

Object Client
version

Server
version

Methods Properties Event
handlers
vi JavaScript Reference

database LW 1+ beginTransaction
commitTransaction
connect
connected
cursor
disconnect
execute
majorErrorCode
majorErrorMessage
minorErrorCode
minorErrorMessage
rollbackTransaction
SQLTable
storedProc
storedProcArgs
toString

prototype

Date Nav 2+ LW 1+ getDate
getDay
getHours
getMinutes
getMonth
getSeconds
getTime
getTimezoneOffset
getYear
parse
setDate
setHours
setMinutes
setMonth
setSeconds
setTime
setYear
toGMTString
toLocaleString
UTC

prototype

Table 3 Objects with their methods and properties (Continued)

Object Client
version

Server
version

Methods Properties Event
handlers
What’s in this Reference vii

wn
DbPool Svr 3 DbPool
connect
connected
connection
disconnect
majorErrorCode
majorErrorMessage
minorErrorCode
minorErrorMessage
storedProcArgs
toString

document Nav 2+ captureEvents
close
getSelection
handleEvent
open
releaseEvents
routeEvent
write
writeln

alinkColor
anchors
applets
bgColor
cookie
domain
embeds
fgColor
formName
forms
images
lastModified
layers
linkColor
links
plugins
referrer
title
URL
vlinkColor

onClick
onDblClick
onKeyDown
onKeyPress
onKeyUp
onMouseDo
onMouseUp

Table 3 Objects with their methods and properties (Continued)

Object Client
version

Server
version

Methods Properties Event
handlers
viii JavaScript Reference

event Nav 4 data
height
layerX
layerY
modifiers
pageX
pageY
screenX
screenY
target
type
which
width

File LW 1+ byteToString
clearError
close
eof
error
exists
flush
getLength
getPosition
open
read
readByte
readln
setPosition
stringToByte
write
writeByte
writeln

prototype

FileUpload Nav 2+ blur
focus
handleEvent
select

form
name
type
value

onBlur
onChange
onFocus

Table 3 Objects with their methods and properties (Continued)

Object Client
version

Server
version

Methods Properties Event
handlers
What’s in this Reference ix

Form Nav 2+ handleEvent
reset
submit

action
elements
encoding
length
method
name
target

onReset
onSubmit

Frame
(see Window)

Nav 2+

Function Nav 3+ LW 1+ toString arguments
arity
caller
prototype

Hidden Nav 2+ form
name
type
value

History Nav 2+ back
forward
go

current
length
next
previous

Image Nav 3+ handleEvent border
complete
height
hspace
lowsrc
name
prototype
src
vspace
width

onAbort
onError
onKeyDown
onKeyPress
onKeyUp
onLoad

Table 3 Objects with their methods and properties (Continued)

Object Client
version

Server
version

Methods Properties Event
handlers
x JavaScript Reference

t
er

wn
t

er
Layer Nav 4 captureEvents
handleEvent
load
moveAbove
moveBelow
moveBy
moveTo
moveToAbsolute
releaseEvents
resizeBy
resizeTo
routeEvent

above
background
bgColor
below
clip.bottom
clip.height
clip.left
clip.right
clip.top
clip.width
document
left
name
pageX
pageY
parentLayer
siblingAbove
siblingBelow
src
top
visibility
zIndex

onBlur
onFocus
onLoad
onMouseOu
onMouseOv

Link Nav 2+ handleEvent hash
host
hostname
href
pathname
port
protocol
search
target
text

onClick
onDblClick
onKeyDown
onKeyPress
onKeyUp
onMouseDo
onMouseOu
onMouseUp
onMouseOv

Location Nav 2+ reload
replace

hash
host
hostname
href
pathname
port
protocol
search

Table 3 Objects with their methods and properties (Continued)

Object Client
version

Server
version

Methods Properties Event
handlers
What’s in this Reference xi

Lock Svr 3 isValid
lock
unlock

Math Nav 2+ LW 1+ abs
acos
asin
atan
atan2
ceil
cos
exp
floor
log
max
min
pow
random
round
sin
sqrt
tan

E
LN10
LN2
LOG10E
LOG2E
PI
SQRT1_2
SQRT2

MimeType Nav 3+ description
enabledPlugin
suffixes
type

navigator Nav 2+ javaEnabled
plugins.refresh
preference
taintEnabled

appCodeName
appName
appVersion
language
mimeTypes
platform
plugins
userAgent

Table 3 Objects with their methods and properties (Continued)

Object Client
version

Server
version

Methods Properties Event
handlers
xii JavaScript Reference

Number Nav 3+ LW 1+ MAX_VALUE
MIN_VALUE
NaN
NEGATIVE_INFINITY
POSITIVE_INFINITY
prototype

Object Nav 2+ LW 1+ eval
toString
unwatch
valueOf
watch

constructor
prototype

Option Nav 2+ defaultSelected
selected
text
value

Password Nav 2+ blur
focus
handleEvent
select

defaultValue
form
name
type
value

onBlur
onFocus

Plugin Nav 3+ description
filename
length
name

project LW 1+ lock
unlock

Radio Nav 2+ blur
click
focus
handleEvent

checked
defaultChecked
form
name
type
value

onBlur
onClick
onFocus

Table 3 Objects with their methods and properties (Continued)

Object Client
version

Server
version

Methods Properties Event
handlers
What’s in this Reference xiii

RegExp Nav 4 Svr 3 compile
exec
test

$1, ..., $9
global
ignoreCase
input ($_)
lastIndex
lastMatch ($&)
lastParen ($+)
leftContext ($‘)
multiline ($*)
rightContext ($’)
source

request LW 1+ agent
imageX
imageY
inputName
ip
method
protocol

Reset Nav 2+ blur
click
focus
handleEvent

form
name
type
value

onBlur
onClick
onFocus

Resultset Svr 3 close
columnName
columns
next

prototype

screen Nav 4 availHeight
availWidth
colorDepth
height
pixelDepth
width

Select Nav 2+ blur
focus
handleEvent

form
length
name
options
selectedIndex
type

onBlur
onChange
onFocus

Table 3 Objects with their methods and properties (Continued)

Object Client
version

Server
version

Methods Properties Event
handlers
xiv JavaScript Reference

SendMail Svr 3 errorCode
errorMessage
send

Bcc
Body
Cc
Errorsto
From
Organization
Replyto
Smtpserver
Subject
To

server LW 1+ lock
unlock

host
hostname
port
protocol

Stproc Svr 3 close
outParamCount
outParameters
resultSet
returnValue

prototype

Table 3 Objects with their methods and properties (Continued)

Object Client
version

Server
version

Methods Properties Event
handlers
What’s in this Reference xv

String Nav 2+ LW 1+ anchor
big
blink
bold
charAt
charCodeAt
concat
fixed
fontcolor
fontsize
fromCharCode
indexOf
italics
lastIndexOf
link
match
replace
search
slice
small
split
strike
sub
substr
substring
sup
toLowerCase
toUpperCase

length
prototype

Submit Nav 2+ blur
click
focus
handleEvent

form
name
type
value

onBlur
onClick
onFocus

Text Nav 2+ blur
focus
handleEvent
select

defaultValue
form
name
type
value

onBlur
onChange
onFocus
onSelect

Table 3 Objects with their methods and properties (Continued)

Object Client
version

Server
version

Methods Properties Event
handlers
xvi JavaScript Reference

Textarea Nav 2+ blur
focus
handleEvent
select

defaultValue
form
name
type
value

onBlur
onChange
onFocus
onKeyDown
onKeyPress
onKeyUp
onSelect

Window Nav 2+ alert
back
blur
captureEvents
clearInterval
clearTimeout
close
confirm
disableExternalCapture
enableExternalCapture
find
focus
forward
handleEvent
home
moveBy
moveTo
open
print
prompt
releaseEvents
resizeBy
resizeTo
routeEvent
scroll
scrollBy
scrollTo
setInterval
setTimeout
stop

closed
defaultStatus
document
frames
history
innerHeight
innerWidth
length
location
locationbar
menubar
name
opener
outerHeight
outerWidth
pageXOffset
pageYOffset
parent
personalbar
scrollbars
self
status
statusbar
toolbar
top
window

onBlur
onDragDrop
onError
onFocus
onLoad
onMove
onResize
onUnload

Table 3 Objects with their methods and properties (Continued)

Object Client
version

Server
version

Methods Properties Event
handlers
What’s in this Reference xvii

Table 4 Methods

Method Of object Client
version

Server
Version

abs Math Nav 2+ LW 1+

acos Math Nav 2+ LW 1+

alert Window Nav 2+

anchor String Nav 2+ LW 1+

asin Math Nav 2+ LW 1+

atan Math Nav 2+ LW 1+

atan2 Math Nav 2+ LW 1+

back History Nav 2+

back Window Nav 4

beginTransaction Connection Svr 3

beginTransaction database LW 1+

big String Nav 2+ LW 1+

blink String Nav 2+ LW 1+

blobImage blob LW 1+

blobLink blob LW 1+

blur Button Nav 2+

blur Checkbox Nav 2+

blur FileUpload Nav 2+

blur Password Nav 2+

blur Radio Nav 2+

blur Reset Nav 2+

blur Select Nav 2+

blur Submit Nav 2+

blur Text Nav 2+

blur Textarea Nav 2+
xviii JavaScript Reference

blur Window Nav 3+

bold String Nav 2+ LW 1+

byteToString File LW 1+

captureEvents document Nav 4

captureEvents Layer Nav 4

captureEvents Window Nav 4

ceil Math Nav 2+ LW 1+

charAt String Nav 2+ LW 1+

charCodeAt String Nav 4 Svr 3

clearError File LW 1+

clearInterval Window Nav 4

clearTimeout Window Nav 2+

click Button Nav 2+

click Checkbox Nav 2+

click Radio Nav 2+

click Reset Nav 2+

click Submit Nav 2+

close Cursor LW 1+

close document Nav 2+

close File LW 1+

close Resultset Svr 3

close Stproc Svr 3

close Window Nav 2+

columnName Cursor LW 1+

columnName Resultset Svr 3

columns Cursor LW 1+

Table 4 Methods (Continued)

Method Of object Client
version

Server
Version
What’s in this Reference xix

columns Resultset Svr 3

commitTransaction Connection Svr 3

commitTransaction database LW 1+

compile RegExp Nav 4 Svr 3

concat Array Nav 4 Svr 3

concat String Nav 4 Svr 3

confirm Window Nav 2+

connect database LW 1+

connect DbPool Svr 3

connected Connection Svr 3

connected database LW 1+

connected DbPool Svr 3

connection DbPool Svr 3

cos Math Nav 2+ LW 1+

cursor Connection Svr 3

cursor database LW 1+

DbPool DbPool Svr 3

deleteRow Cursor LW 1+

destroy client LW 1+

disableExternalCapture Window Nav 4

disconnect database LW 1+

disconnect DbPool Svr 3

enableExternalCapture Window Nav 4

eof File LW 1+

error File LW 1+

errorCode SendMail Svr 3

Table 4 Methods (Continued)

Method Of object Client
version

Server
Version
xx JavaScript Reference

errorMessage SendMail Svr 3

eval Object Nav 3 LW 1+

exec RegExp Nav 4 Svr 3

execute Connection Svr 3

execute database LW 1+

exists File LW 1+

exp Math Nav 2+ LW 1+

expiration client LW 1+

find Window Nav 4

fixed String Nav 2+ LW 1+

floor Math Nav 2+ LW 1+

flush File LW 1+

focus Button Nav 2+

focus Checkbox Nav 2+

focus FileUpload Nav 2+

focus Password Nav 2+

focus Radio Nav 2+

focus Reset Nav 2+

focus Select Nav 2+

focus Submit Nav 2+

focus Text Nav 2+

focus Textarea Nav 2+

focus Window Nav 3+

fontcolor String Nav 2+ LW 1+

fontsize String Nav 2+ LW 1+

forward History Nav 2+

Table 4 Methods (Continued)

Method Of object Client
version

Server
Version
What’s in this Reference xxi

forward Window Nav 4

fromCharCode String Nav 4 Svr 3

getDate Date Nav 2+ LW 1+

getDay Date Nav 2+ LW 1+

getHours Date Nav 2+ LW 1+

getLength File LW 1+

getMinutes Date Nav 2+ LW 1+

getMonth Date Nav 2+ LW 1+

getPosition File LW 1+

getSeconds Date Nav 2+ LW 1+

getSelection document Nav 4

getTime Date Nav 2+ LW 1+

getTimezoneOffset Date Nav 2+ LW 1+

getYear Date Nav 2+ LW 1+

go History Nav 2+

handleEvent Button Nav 4

handleEvent Checkbox Nav 4

handleEvent document Nav 4

handleEvent FileUpload Nav 4

handleEvent Form Nav 4

handleEvent Image Nav 4

handleEvent Layer Nav 4

handleEvent Link Nav 4

handleEvent Password Nav 4

handleEvent Radio Nav 4

handleEvent Reset Nav 4

Table 4 Methods (Continued)

Method Of object Client
version

Server
Version
xxii JavaScript Reference

handleEvent Select Nav 4

handleEvent Submit Nav 4

handleEvent Text Nav 4

handleEvent Textarea Nav 4

handleEvent Window Nav 4

home Window Nav 4

indexOf String Nav 2+ LW 1+

insertRow Cursor LW 1+

isValid Lock Svr 3

italics String Nav 2+ LW 1+

javaEnabled navigator Nav 3+

join Array Nav 3+ LW 1+

lastIndexOf String Nav 2+ LW 1+

link String Nav 2+ LW 1+

load Layer Nav 4

lock Lock Svr 3

lock project LW 1+

lock server LW 1+

log Math Nav 2+ LW 1+

majorErrorCode Connection Svr 3

majorErrorCode database LW 1+

majorErrorCode DbPool Svr 3

majorErrorMessage Connection Svr 3

majorErrorMessage database LW 1+

majorErrorMessage DbPool Svr 3

match String Nav 4 Svr 3

Table 4 Methods (Continued)

Method Of object Client
version

Server
Version
What’s in this Reference xxiii

max Math Nav 2+ LW 1+

min Math Nav 2+ LW 1+

minorErrorCode Connection Svr 3

minorErrorCode database LW 1+

minorErrorCode DbPool Svr 3

minorErrorMessage Connection Svr 3

minorErrorMessage database LW 1+

minorErrorMessage DbPool Svr 3

moveAbove Layer Nav 4

moveBelow Layer Nav 4

moveBy Layer Nav 4

moveBy Window Nav 4

moveTo Layer Nav 4

moveTo Window Nav 4

moveToAbsolute Layer Nav 4

next Cursor LW 1+

next Resultset Svr 3

open document Nav 2+

open File LW 1+

open Window Nav 2+

outParamCount Stproc Svr 3

outParameters Stproc Svr 3

parse Date Nav 2+ LW 1+

plugins.refresh navigator Nav 3+

pop Array Nav 4 Svr 3

pow Math Nav 2+ LW 1+

Table 4 Methods (Continued)

Method Of object Client
version

Server
Version
xxiv JavaScript Reference

preference navigator Nav 4

print Window Nav 4

prompt Window Nav 2+

push Array Nav 4 Svr 3

random Math Nav 2+ LW 1+

read File LW 1+

readByte File LW 1+

readln File LW 1+

refresh navigator.plugins Nav 3+

release Connection Svr 3

releaseEvents document Nav 4

releaseEvents Layer Nav 4

releaseEvents Window Nav 4

reload Location Nav 3+

replace Location Nav 3+

replace String Nav 4 Svr 3

reset Form Nav 3+

resizeBy Layer Nav 4

resizeBy Window Nav 4

resizeTo Layer Nav 4

resizeTo Window Nav 4

resultSet Stproc Svr 3

returnValue Stproc Svr 3

reverse Array Nav 3+ LW 1+

rollbackTransaction Connection Svr 3

rollbackTransaction database LW 1+

Table 4 Methods (Continued)

Method Of object Client
version

Server
Version
What’s in this Reference xxv

round Math Nav 2+ LW 1+

routeEvent document Nav 4

routeEvent Layer Nav 4

routeEvent Window Nav 4

scroll Window Nav 2-3

scrollBy Window Nav 4

scrollTo Window Nav 4

search String Nav 4 Svr 3

select FileUpload Nav 2+

select Password Nav 2+

select Text Nav 2+

select Textarea Nav 2+

send SendMail Svr 3

setDate Date Nav 2+ LW 1+

setHours Date Nav 2+ LW 1+

setInterval Window Nav 4

setMinutes Date Nav 2+ LW 1+

setMonth Date Nav 2+ LW 1+

setPosition File LW 1+

setSeconds Date Nav 2+ LW 1+

setTime Date Nav 2+ LW 1+

setTimeout Window Nav 2+

setYear Date Nav 2+ LW 1+

shift Array Nav 4 Svr 3

sin Math Nav 2+ LW 1+

slice Array Nav 4 Svr 3

Table 4 Methods (Continued)

Method Of object Client
version

Server
Version
xxvi JavaScript Reference

slice String Nav 4 Svr 3

small String Nav 2+ LW 1+

sort Array Nav 3+ LW 1+

splice Array Nav 4 Svr 3

split String Nav 3+ LW 1+

SQLTable Connection Svr 3

SQLTable database LW 1+

sqrt Math Nav 2+ LW 1+

stop Window Nav 4

storedProc Connection Svr 3

storedProc database Svr 3

storedProcArgs database Svr 3

storedProcArgs DbPool Svr 3

strike String Nav 2+ LW 1+

stringToByte File LW 1+

sub String Nav 2+ LW 1+

submit Form Nav 2+

substr String Nav 4 Svr 3

substring String Nav 2+ LW 1+

sup String Nav 2+ LW 1+

taintEnabled navigator Nav 3 LW 1

tan Math Nav 2+ LW 1+

test RegExp Nav 4 Svr 3

toGMTString Date Nav 2+ LW 1+

toLocaleString Date Nav 2+ LW 1+

toLowerCase String Nav 2+ LW 1+

Table 4 Methods (Continued)

Method Of object Client
version

Server
Version
What’s in this Reference xxvii

toString Array Nav 3+ LW 1+

toString Boolean Nav 3+ LW 1+

toString Connection Svr 3

toString database LW 1+

toString DbPool Svr 3

toString Number Nav 3+ LW 1+

toString Object Nav 2+ LW 1+

toUpperCase String Nav 2+ LW 1+

unlock Lock Svr 3

unlock project LW 1+

unlock server LW 1+

unshift Array Nav 4 Svr 3

unwatch Object Nav 4 Svr 3

updateRow Cursor LW 1+

UTC Date Nav 2+ LW 1+

valueOf Object Nav 3+ LW 1+

watch Object Nav 4 Svr 3

write document Nav 2+

write File LW 1+

writeByte File LW 1+

writeln document Nav 2+

writeln File LW 1+

Table 4 Methods (Continued)

Method Of object Client
version

Server
Version
xxviii JavaScript Reference

Table 5 Properties

Property Of object Client
version

Server
version

$1, ..., $9 RegExp Nav 4 Svr 3

$_ RegExp Nav 4 Svr 3

$* RegExp Nav 4 Svr 3

$& RegExp Nav 4 Svr 3

$+ RegExp Nav 4 Svr 3

$‘ RegExp Nav 4 Svr 3

$’ RegExp Nav 4 Svr 3

above Layer Nav 4

action Form Nav 2+

agent request LW 1+

alinkColor document Nav 2+

anchors document Nav 2+

appCodeName navigator Nav 2+

applets document Nav 3+

appName navigator Nav 2+

appVersion navigator Nav 2+

arguments Function Nav 3+ LW 1+

arity Function Nav 4 LW 1+

background Layer Nav 4

below Layer Nav 4

bgColor document Nav 2+

bgColor Layer Nav 4

border Image Nav 3+

caller Function Nav 3+ LW 1+

checked Checkbox Nav 2+
What’s in this Reference xxix

checked Radio Nav 2+

clip.bottom Layer Nav 4

clip.height Layer Nav 4

clip.left Layer Nav 4

clip.right Layer Nav 4

clip.top Layer Nav 4

clip.width Layer Nav 4

closed Window Nav 3+

colorDepth screen Nav 4

complete Image Nav 3+

constructor Object Nav 3+ LW 1+

cookie document Nav 2+

current History Nav 3+

cursorColumn Cursor LW 1+

data event Nav 4

defaultChecked Checkbox Nav 2+

defaultChecked Radio Nav 2+

defaultStatus Window Nav 2+

defaultSelected Option Nav 3+

defaultValue Password Nav 2+

defaultValue Text Nav 2+

defaultValue Textarea Nav 2+

description MimeType Nav 3+

description Plugin Nav 3+

document Layer Nav 4

document Window Nav 2+

Table 5 Properties (Continued)

Property Of object Client
version

Server
version
xxx JavaScript Reference

domain document Nav 3+

E Math Nav 2+ LW 1+

elements Form Nav 2+

embeds document Nav 3+

enabledPlugin MimeType Nav 3+

encoding Form Nav 2+

fgColor document Nav 2+

filename Plugin Nav 3+

form Button Nav 2+

form Checkbox Nav 2+

form FileUpload Nav 2+

form Hidden Nav 2+

form Password Nav 2+

form Radio Nav 2+

form Reset Nav 2+

form Select Nav 2+

form Submit Nav 2+

form Text Nav 2+

form Textarea Nav 2+

formName document Nav 3+

forms document Nav 3+

frames Window Nav 2+

global RegExp Nav 4 Svr 3

hash Link Nav 2+

hash Location Nav 2+

height event Nav 4

Table 5 Properties (Continued)

Property Of object Client
version

Server
version
What’s in this Reference xxxi

height Image Nav 3+

height screen Nav 4

history Window Nav 2+

host Link Nav 2+

host Location Nav 2+

host server LW 1+

hostname Link Nav 2+

hostname Location Nav 2+

hostname server LW 1+

href Link Nav 2+

href Location Nav 2+

hspace Image Nav 3+

ignoreCase RegExp Nav 4 Svr 3

images document Nav 3+

imageX request LW 1+

imageY request LW 1+

index Array Nav 4 Svr 3

input Array Nav 4 Svr 3

innerHeight Window Nav 4

innerWidth Window Nav 4

input RegExp Nav 4 Svr 3

inputName request LW 1+

ip request LW 1+

language navigator Nav 4

lastIndex RegExp Nav 4 Svr 3

lastMatch RegExp Nav 4 Svr 3

Table 5 Properties (Continued)

Property Of object Client
version

Server
version
xxxii JavaScript Reference

lastModified document Nav 2+

lastParen RegExp Nav 4 Svr 3

layerX event Nav 4

layerY event Nav 4

layers document Nav 4

left Layer Nav 4

leftContext RegExp Nav 4 Svr 3

length Array Nav 3+ LW 1+

length Form Nav 2+

length History Nav 2+

length Plugin Nav 3+

length Select Nav 2+

length String Nav 2+ LW 1+

length Window Nav 2+

linkColor document Nav 2+

links document Nav 2+

location Window Nav 2+

locationbar Window Nav 4

LN10 Math Nav 2+ LW 1+

LN2 Math Nav 2+ LW 1+

LOG10E Math Nav 2+ LW 1+

LOG2E Math Nav 2+ LW 1+

lowsrc Image Nav 3+

MAX_VALUE Number Nav 3+ LW 1+

menubar Window Nav 4

method Form Nav 2+

Table 5 Properties (Continued)

Property Of object Client
version

Server
version
What’s in this Reference xxxiii

method request LW 1+

mimeTypes navigator Nav 3+

modifiers event Nav 4

MIN_VALUE Number Nav 3+ LW 1+

multiline RegExp Nav 4 Svr 3

name Button Nav 2+

name Checkbox Nav 2+

name FileUpload Nav 2+

name Form Nav 2+

name Hidden Nav 2+

name Image Nav 3+

name Layer Nav 4

name Password Nav 2+

name Plugin Nav 3+

name Radio Nav 2+

name Reset Nav 2+

name Select Nav 2+

name Submit Nav 2+

name Text Nav 2+

name Textarea Nav 2+

name Window Nav 2+

NaN Number Nav 3+ LW 1+

NEGATIVE_INFINITY Number Nav 3+ LW 1+

next History Nav 3+

opener Window Nav 3+

options Select Nav 2+

Table 5 Properties (Continued)

Property Of object Client
version

Server
version
xxxiv JavaScript Reference

outerHeight Window Nav 4

outerWidth Window Nav 4

pageX event Nav 4

pageX Layer Nav 4

pageXOffset Window Nav 4

pageY event Nav 4

pageY Layer Nav 4

pageYOffset Window Nav 4

parent Window Nav 2+

parentLayer Layer Nav 4

pathname Link Nav 2+

pathname Location Nav 2+

personalbar Window Nav 4

PI Math Nav 2+ LW 1+

pixelDepth screen Nav 4

platform navigator Nav 4

plugins document Nav 3+

plugins navigator Nav 3+

port Link Nav 2+

port Location Nav 2+

port server LW 1+

POSITIVE_INFINITY Number Nav 3+ LW 1+

previous History Nav 3+

protocol Link Nav 2+

protocol Location Nav 2+

protocol request LW 1+

Table 5 Properties (Continued)

Property Of object Client
version

Server
version
What’s in this Reference xxxv

protocol server LW 1+

prototype Array Nav 3+ LW 1+

prototype Boolean Nav 3+ LW 1+

prototype Connection Svr 3

prototype Cursor Nav 3+ LW 1+

prototype database LW 1+

prototype Date Nav 3+ LW 1+

prototype DbPool Svr 3

prototype File LW 1+

prototype Function Nav 3+ LW 1+

prototype Image Nav 3+ LW 1+

prototype Number Nav 3+ LW 1+

prototype Object Nav 3+ LW 1+

prototype Resultset Svr 3

prototype SendMail Svr 3

prototype Stproc Svr 3

prototype String Nav 3+ LW 1+

referrer document Nav 2+

rightContext RegExp Nav 4 Svr 3

screenX event Nav 4

screenY event Nav 4

scrollbars Window Nav 4

search Link Nav 2+

search Location Nav 2+

selected Option Nav 2+

selectedIndex Select Nav 2+

Table 5 Properties (Continued)

Property Of object Client
version

Server
version
xxxvi JavaScript Reference

self Window Nav 2+

siblingAbove Layer Nav 4

siblingBelow Layer Nav 4

source RegExp Nav 4 Svr 3

SQRT1_2 Math Nav 2+ LW 1+

SQRT2 Math Nav 2+ LW 1+

src Image Nav 3+

src Layer Nav 4

status Window Nav 2+

statusbar Window Nav 4

suffixes MimeType Nav 3+

target event Nav 4

target Form Nav 2+

target Link Nav 2+

text Option Nav 2+

text Link Nav 4

title document Nav 2+

toolbar Window Nav 4

top Layer Nav 4

top Window Nav 2+

type Button Nav 3+

type Checkbox Nav 3+

type event Nav 4

type FileUpload Nav 3+

type Hidden Nav 3+

type Password Nav 3+

Table 5 Properties (Continued)

Property Of object Client
version

Server
version
What’s in this Reference xxxvii

type MimeType Nav 3+

type Radio Nav 3+

type Reset Nav 3+

type Select Nav 3+

type Submit Nav 3+

type Text Nav 3+

type Textarea Nav 3+

URL document Nav 2+

userAgent navigator Nav 2+

value Button Nav 2+

value Checkbox Nav 2+

value FileUpload Nav 2+

value Hidden Nav 2+

value Option Nav 2+

value Password Nav 2+

value Radio Nav 2+

value Reset Nav 2+

value Submit Nav 2+

value Text Nav 2+

value Textarea Nav 2+

visibility Layer Nav 4

vlinkColor document Nav 2+

vspace Image Nav 3+

which event Nav 4

width event Nav 4

width Image Nav 3+

Table 5 Properties (Continued)

Property Of object Client
version

Server
version
xxxviii JavaScript Reference

width screen Nav 4

window Window Nav 2+

zIndex Layer Nav 4

Table 6 Global functions

Function Client
version

Server
version

addClient LW 1+

addResponseHeader Svr 3

blob LW 1+

callC LW 1+

debug LW 1+

deleteResponseHeader Svr 3

escape Nav 2+ LW 1+

eval Nav 2+ LW 1+

flush LW 1+

getOptionValue LW 1+

getOptionValueCount LW 1+

isNaN Nav 3+ LW 1+

Number Nav 4 Svr 3

parseFloat Nav 3+ LW 1+

parseInt Nav 3+ LW 1+

redirect LW 1+

registerCFunction LW 1+

ssjs_generateClientID Svr 3

Table 5 Properties (Continued)

Property Of object Client
version

Server
version
What’s in this Reference xxxix

ssjs_getCGIVariable Svr 3

ssjs_getClientID Svr 3

String Nav 4 Svr 3

taint Nav 3 LW 1+

unescape Nav 2+ LW 1+

untaint Nav 3 LW 1+

write LW 1+

Table 7 Event handlers

Event handler Client
version

Handler for

onAbort Nav 3+ Image

onBlur Nav 3+ Button , Checkbox , FileUpload , Layer ,
Password , Radio , Reset , Select , Submit , Text ,
Textarea , Window

onChange Nav 3+ FileUpload , Select , Text , Textarea

onClick Nav 3+ Button , Checkbox , document , Link , Radio ,
Reset , Submit

onDblClick Nav 4 document , Link

onDragDrop Nav 4 Window

onError Nav 3+ Image , Window

onFocus Nav 3+ Button , Checkbox , FileUpload , Layer ,
Password , Radio , Reset , Select , Submit , Text ,
Textarea , Window

onKeyDown Nav 4 document , Image , Link , Textarea

onKeyPress Nav 4 document , Image , Link , Textarea

onKeyUp Nav 4 document , Image , Link , Textarea

Table 6 Global functions (Continued)

Function Client
version

Server
version
xl JavaScript Reference

onLoad Nav 3+ Image , Layer , Window

onMouseDown Nav 4 Button , document , Link

onMouseMove Nav 4

onMouseOut Nav 3+ Layer , Link

onMouseOver Nav 3+ Layer , Link

onMouseUp Nav 4 Button , document , Link

onMove Nav 4 Window

onReset Nav 3+ Form

onResize Nav 4 Window

onSelect Nav 3+ Text , Textarea

onSubmit Nav 3+ Form

onUnload Nav 3+ Window

Table 7 Event handlers (Continued)

Event handler Client
version

Handler for
What’s in this Reference xli

xlii JavaScript Reference

Getting Started
This book is a reference manual for the JavaScript language, including objects
in the core language and both client-side and server-side extensions. JavaScript
is Netscape’s cross-platform, object-based scripting language for client and
server applications.

Sections:
• What You Should Already Know
• Where to Find JavaScript Information
• Document Conventions

What You Should Already Know
This book assumes you have this basic background:

• A general understanding of the Internet and the World Wide Web (WWW).

• Good working knowledge of HyperText Markup Language (HTML).
Experience with forms and the Common Gateway Interface (CGI) is also
useful.

• If you’re going to use the LiveWire Database Service, relational databases
and a working knowledge of Structured Query Language (SQL).
Getting Started xliii

Where to Find JavaScript Information
Where to Find JavaScript Information
Because JavaScript can be approached on several levels, its documentation has
been split across several books to facilitate your introduction. The suite of
online JavaScript books includes:

• JavaScript Guide1 provides information about the core JavaScript language
and about its client-side objects.

• Writing Server-Side JavaScript Applications2 provides information about
JavaScript’s server-side objects and functions. In some cases, core language
features work differently on the client than on the server. These differences
are also discussed in this book. Finally, this book provides extra
information you need to create an entire JavaScript application.

• JavaScript Reference3 (this manual) provides reference material for the
entire JavaScript language, including both client-side and server-side
JavaScript.

• The JavaScript page4 of the DevEdge library5 contains several other
documents of interest about JavaScript. The contents of this page change
frequently. You should revisit it periodically to get the newest information.

In addition, other Netscape books discuss certain aspects of JavaScript
particularly relevant to their topic area.

The Netscape web site contains much information that can be useful when
you’re creating JavaScript applications. Some URLs of particular interest include:

• http://home.netscape.com/one_stop/intranet_apps/index.html

This is the Netscape AppFoundry Online home page. Netscape AppFoundry
Online is a source for starter applications, technical information, tools, and
expert forums for quickly building and dynamically deploying open intranet
applications. This site also includes troubleshooting information in the
resources section and extra help on setting up your JavaScript environment.

1. http://developer.netscape.com/library/documentation/communicator/jsguide4/
index.htm

2. http://developer.netscape.com/library/documentation/enterprise/wrijsap/index.htm
3. http://developer.netscape.com/library/documentation/communicator/jsref/index.htm
4. http://developer.netscape.com/library/documentation/javascript.html
5. http://developer.netscape.com/library/documentation/
xliv JavaScript Reference

Document Conventions
• http://help.netscape.com/products/tools/livewire

This is Netscape’s technical support page for information on the LiveWire
Database Service. It contains lots of useful pointers to information on using
LiveWire in your JavaScript applications.

• http://developer.netscape.com/library/one/sdk/livewire/

This is Netscape’s support page for information on server-side JavaScript.
This URL is also available by clicking the Documentation link on the
Netscape Server Application Manager

Document Conventions
Occasionally this book tells you where to find things in the user interface of
Netscape Navigator. In these cases, the book describes the user interface in
Navigator 4.0. This interface may be different in earlier versions of the browser.

JavaScript applications run on many operating systems; the information here
applies to all versions. File and directory paths are given in Windows format
(with backslashes separating directory names). For Unix versions, the directory
paths are the same, except that you use slashes instead of backslashes to
separate directories.

This book uses uniform resource locators (URLs) of the form

http:// server.domain / path / file .html

In these URLs, server represents the name of the server on which you run your
application, such as research1 or www; domain represents your Internet
domain name, such as netscape.com or uiuc.edu ; path represents the
directory structure on the server; and file.html represents an individual
filename. In general, items in italics in URLs are placeholders and items in
normal monospace font are literals. If your server has Secure Sockets Layer
(SSL) enabled, you would use https instead of http in the URL.

This book uses the following font conventions:

• The monospace font is used for sample code and code listings, API and
language elements (such as function names and class names), filenames,
pathnames, directory names, HTML tags, and any text that must be typed
on the screen. (Monospace italic font is used for placeholders
embedded in code.)
Getting Started xlv

Document Conventions
• Italic type is used for book titles, emphasis, variables and placeholders, and
words used in the literal sense.

• Boldface type is used for glossary terms.
xlvi JavaScript Reference

C h a p t e r

1
Introduction
This chapter briefly introduces JavaScript, Netscape’s cross-platform, object-
based scripting language for client and server applications.

JavaScript lets you create applications that run over the Internet. Using
JavaScript, you can create dynamic HTML pages that process user input and
maintain persistent data using special objects, files, and relational databases.
You can build applications ranging from internal corporate information
management and intranet publishing to mass-market electronic transactions
and commerce. Through JavaScript’s LiveConnect functionality, your
applications can access Java and CORBA distributed object applications.

Server-side and client-side JavaScript share the same core language. This core
language corresponds to ECMA-262, the scripting language standardized by the
European standards body, with some additions. The core language contains a
set of core objects, such as the Array and Date objects. It also defines other
language features such as its expressions, statements, and operators. Although
server-side and client-side JavaScript use the same core functionality, in some
cases they use them differently. You can download a PDF version of the
ECMA-262 specification1.

The components of JavaScript are illustrated in Figure 1.1.

1. http://developer.netscape.com/library/javascript/e262-pdf.pdf
Chapter 1, Introduction 47

Figure 1.1 The JavaScript language.

Client-side JavaScript (or Navigator JavaScript) encompasses the core language
plus extras such as the predefined objects only relevant to running JavaScript in
a browser. Server-side JavaScript encompasses the same core language plus
extras such as the predefined objects and functions only relevant to running
JavaScript on a server.

Client-side JavaScript is embedded directly in HTML pages and is interpreted by
the browser completely at runtime. Because production applications frequently
have greater performance demands upon them, JavaScript applications that
take advantage of its server-side capabilities are compiled before they are
deployed. The next two sections introduce you to how JavaScript works on the
client and on the server.

CLIENT-SIDE JAVASCRIPT

Core
JavaScript

Core language
features (such
as variables,
functions, and
LiveConnect)

Client-side
additions
(such as window
and history)

Server-side
additions
(such as server
and database

SERVER-SIDE JAVASCRIPT

Client-side

Server-side
48 JavaScript Reference

Client-Side JavaScript
Client-Side JavaScript
Web browsers such as Netscape Navigator 2.0 (and later versions) can interpret
client-side JavaScript statements embedded in an HTML page. When the
browser (or client) requests such a page, the server sends the full content of the
document, including HTML and JavaScript statements, over the network to the
client. The client reads the page from top to bottom, displaying the results of
the HTML and executing JavaScript statements as it goes. This process produces
the results that the user sees and is illustrated in Figure 1.2.

Figure 1.2 Client-side JavaScript.

Client-side JavaScript statements embedded in an HTML page can respond to
user events such as mouse clicks, form input, and page navigation. For
example, you can write a JavaScript function to verify that users enter valid

<HEAD><TITLE>A Simple Document</TITLE>
<SCRIPT>
function update(form) {

alert("Form being updated")
}
</SCRIPT>
</HEAD>
<BODY>
<FORM NAME="myform" ACTION="start.htm"
METHOD="get">
Enter a value:
. . .
</FORM>
</BODY>

mypage.html

Internet
Chapter 1, Introduction 49

Server-Side JavaScript
information into a form requesting a telephone number or zip code. Without
any network transmission, the embedded JavaScript on the HTML page can
check the entered data and display a dialog box to the user who enters invalid
data.

Server-Side JavaScript
On the server, JavaScript is also embedded in HTML pages. The server-side
statements can connect to relational databases from different vendors, share
information across users of an application, access the file system on the server,
or communicate with other applications through LiveConnect and Java. A
compiled JavaScript application can also include client-side JavaScript in
addition to server-side JavaScript.

In contrast to pure client-side JavaScript scripts, JavaScript applications that use
server-side JavaScript are compiled into bytecode executable files. These
application executables are run in concert with a web server that contains the
JavaScript runtime engine. For this reason, creating JavaScript applications is a
two-stage process.

In the first stage, shown in Figure 1.3, you (the developer) create HTML pages
(which can contain both client-side and server-side JavaScript statements) and
JavaScript files. You then compile all of those files into a single executable.
50 JavaScript Reference

Server-Side JavaScript
Figure 1.3 Server-side JavaScript during development.

In the second stage, shown in Figure 1.4, a page in the application is requested
by a client browser. The runtime engine uses the application executable to look
up the source page and dynamically generate the HTML page to return. It runs
any server-side JavaScript statements found on the page. The result of those
statements might add new HTML or client-side JavaScript statements to the
HTML page. It then sends the resulting page over the network to the Navigator
client, which displays the results.

Web file
(bytecode
executable)

JavaScript
application
compiler

...
function Substitute(guess, word, answer) {

var result = "";
var len = word.length;
var pos = 0;
while(pos < len) {

var word_char = word.substring(pos, pos + 1);
var answer_char = answer.substring(pos, pos + 1);
if (word_char == guess) result = result + guess;
else result = result + answer_char;
pos = pos + 1;

}
return result;

}

hangman.js

hangman.htm

<HTML> <HEAD> <TITLE> Hangman </TITLE></HEAD>
<BODY> </H1> Hangman </H1>

<SERVER>
if (client.gameno == null) {

client.gameno = 1
client.newgame = "true"

}
</SERVER>
You have used the following letters so far:
<SERVER>write(client.used)</SERVER>
<FORM METHOD="post" ACTION="hangman.htm">
<P>
What is your guess?
<INPUT TYPE="text" NAME="guess" SIZE="1">
...
</BODY></HTML>
Chapter 1, Introduction 51

JavaScript Objects
Figure 1.4 Server-side JavaScript during runtime.

In contrast to standard Common Gateway Interface (CGI) programs, all
JavaScript is integrated directly into HTML pages, facilitating rapid development
and easy maintenance. JavaScript’s Session Management Service contains
objects you can use to maintain data that persists across client requests,
multiple clients, and multiple applications. JavaScript’s LiveWire Database
Service provides objects for database access that serve as an interface to
Structured Query Language (SQL) database servers.

JavaScript Objects
JavaScript has predefined objects for the core language, as well as additions for
client-side and server-side JavaScript.

Web file
(bytecode
executable)

JavaScript
runtime
engine

Internet
<HTML><HEAD><TITLE>Hangman</TITLE></>HEAD>
<BODY><H1> Hangman </H1>
You have used the following letters so far:
S A M
<FORM METHOD="post" ACTION="hangman.html">
<P>
What is your guess?
<INPUT TYPE="text" NAME="guess" SIZE="1">
...
</BODY></HTML>
52 JavaScript Reference

JavaScript Objects
JavaScript has the following core objects:

Array , Boolean , Date , Function , Math , Number, Object , String

The additional client-side objects are as follows:

The objects available within the DOM are as follows:

Anchor , Applet , Area , Button , Checkbox , document , event , FileUpload ,
Form, Frame , Hidden , History , Image , Layer , Link , Location , MimeType ,
navigator , Option , Password , Plugin , Radio , Reset , screen , Select ,
Submit , Text , Textarea , Window

These objects represent information relevant to working with JavaScript in a
web browser. Many of these objects are related to each other by occurring as
property values. For example, to access the images in a document, you use the
document.images array, each of whose elements is a Image object. Figure 1.5
shows the client-side object containment hierarchy.
Chapter 1, Introduction 53

JavaScript Objects
Figure 1.5 Containment relationships among client-side objects

Frame

document

Location

History

Form

Layer

Link

Image

Plugin

MimeType

Area

Anchor

Applet

Plugin

Select Option

Password

Hidden

Submit

Reset

Radio

Checkbox

Texturea

Text

FileUpload

Button

Window navigator

Frame

document

Location

Link

Image

Plugin

MimeType

Area

Anchor

Password

Hidden

Submit

Reset

Texturea

Text

FileUpload

Window navigator
54 JavaScript Reference

History

Form

Applet

Plugin

Select Option

Radio

Checkbox

Button

Security
The server-side objects are:

blob , client , Connection , Cursor , database , DbPool , File , Lock , project ,
request , Resultset , SendMail , server , Stproc

As shown in Figure 1.6, some of the additional server-side objects also have a
containment hierarchy.

Figure 1.6 Containment relationships among LiveWire objects

Security
Navigator version 2.02 and later automatically prevents scripts on one server
from accessing properties of documents on a different server. This restriction
prevents scripts from fetching private information such as directory structures
or user session history.

JavaScript for Navigator 3.0 has a feature called data tainting that retains the
security restriction but provides a means of secure access to specific
components on a page.

• When data tainting is enabled, JavaScript in one window can see properties
of another window, no matter what server the other window’s document
was loaded from. However, the author of the other window taints (marks)
property values or other data that should be secure or private, and
JavaScript cannot pass these tainted values on to any server without the
user’s permission.

DbPool Connection
Stproc Resultset

Cursor

database
Stproc Resultset

Cursor
Chapter 1, Introduction 55

Security
• When data tainting is disabled, a script cannot access any properties of a
window on another server.

In Navigator 4.0, data tainting has been removed. Instead, Navigator 4.0
provides signed JavaScript scripts for more reliable and more flexible security.

For information on data tainting and on signed scripts, see Chapter 7,
“JavaScript Security,” in the JavaScript Guide.
56 JavaScript Reference

C h a p t e r

2
Operators
JavaScript has assignment, comparison, arithmetic, bitwise, logical, string, and
special operators. This chapter describes the operators and contains
information about operator precedence.

Table 2.1 summarizes all of the JavaScript operators.

Table 2.1 JavaScript operators.

Operator
Category

Operator Description

Arithmetic
Operators

+ (Addition) Adds 2 numbers.

++ (Increment) Adds one to a variable representing a number (returning either
the new or old value of the variable)

- (Unary negation, subtraction) As a unary operator, negates the value of its
argument. As a binary operator, subtracts 2 numbers.

-- (Decrement) Subtracts one from a variable representing a number
(returning either the new or old value of the variable)

* (Multiplication) Multiplies 2 numbers.

/ (Division) Divides 2 numbers.

% (Modulus) Computes the integer remainder of dividing 2 numbers.

String
Operators

+ (String addition) Concatenates 2 strings.

+= Concatenates 2 strings and assigns the result to the first operand.
Chapter 2, Operators 57

Logical
Operators

&& (Logical AND) Returns true if both logical operands are true. Otherwise,
returns false.

|| (Logical OR) Returns true if either logical expression is true. If both are
false, returns false.

! (Logical negation) If its single operand is true, returns false; otherwise,
returns true.

Bitwise
Operators

& (Bitwise AND) Returns a one in each bit position if bits of both operands
are ones.

^ (Bitwise XOR) Returns a one in a bit position if bits of one but not both
operands are one.

| (Bitwise OR) Returns a one in a bit if bits of either operand is one.

~ (Bitwise NOT) Flips the bits of its operand.

<< (Left shift) Shifts its first operand in binary representation the number of bits
to the left specified in the second operand, shifting in zeros from the right.

>> (Sign-propagating right shift) Shifts the first operand in binary
representation the number of bits to the right specified in the second
operand, discarding bits shifted off.

>>> (Zero-fill right shift) Shifts the first operand in binary representation the
number of bits to the right specified in the second operand, discarding bits
shifted off, and shifting in zeros from the left.

Table 2.1 JavaScript operators. (Continued)

Operator
Category

Operator Description
58 JavaScript Reference

Assignment
Operators

= Assigns the value of the second operand to the first operand.

+= Adds 2 numbers and assigns the result to the first.

-= Subtracts 2 numbers and assigns the result to the first.

*= Multiplies 2 numbers and assigns the result to the first.

/= Divides 2 numbers and assigns the result to the first.

%= Computes the modulus of 2 numbers and assigns the result to the first.

&= Performs a bitwise AND and assigns the result to the first operand.

^= Performs a bitwise XOR and assigns the result to the first operand.

|= Performs a bitwise OR and assigns the result to the first operand.

<<= Performs a left shift and assigns the result to the first operand.

>>= Performs a sign-propagating right shift and assigns the result to the first
operand.

>>>= Performs a zero-fill right shift and assigns the result to the first operand.

Comparison
Operators

== Returns true if the operands are equal.

!= Returns true if the operands are not equal.

> Returns true if left operand is greater than right operand.

>= Returns true if left operand is greater than or equal to right operand.

< Returns true if left operand is less than right operand.

<= Returns true if left operand is less than or equal to right operand.

Table 2.1 JavaScript operators. (Continued)

Operator
Category

Operator Description
Chapter 2, Operators 59

Assignment Operators
Assignment Operators
An assignment operator assigns a value to its left operand based on the value of
its right operand.

The basic assignment operator is equal (=), which assigns the value of its right
operand to its left operand. That is, x = y assigns the value of y to x. The other
assignment operators are shorthand for standard operations, as shown in
Table 2.2.

Special
Operators

?: Lets you perform a simple "if...then...else"

, Evaluates two expressions and returns the result of the second expression.

delete Lets you delete an object property or an element at a specified index in an
array.

new Lets you create an instance of a user-defined object type or of one of the
built-in object types.

this Keyword that you can use to refer to the current object.

typeof Returns a string indicating the type of the unevaluated operand.

void The void operator specifies an expression to be evaluated without returning
a value.

Table 2.1 JavaScript operators. (Continued)

Operator
Category

Operator Description

Implemented in Navigator 2.0

Table 2.2 Assignment operators

Shorthand operator Meaning

x += y x = x + y

x -= y x = x - y

x *= y x = x * y

x /= y x = x / y

x %= y x = x % y
60 JavaScript Reference

Comparison Operators
Comparison Operators
A comparison operator compares its operands and returns a logical value based
on whether the comparison is true or not. The operands can be numerical or
string values. When used on string values, the comparisons are based on the
standard lexicographical ordering.

They are described in Table 2.3. In the examples in this table, assume var1 has
been assigned the value 3 and var2 had been assigned the value 4.

x <<= y x = x << y

x >>= y x = x >> y

x >>>= y x = x >>> y

x &= y x = x & y

x ^= y x = x ^ y

x |= y x = x | y

Table 2.2 Assignment operators

Shorthand operator Meaning

Implemented in Navigator 2.0

Table 2.3 Comparison operators

Operator Description Examples returning true

Equal (==) Returns true if the operands are equal. 3 == var1

Not equal (!=) Returns true if the operands are not equal. var1 != 4

Greater than (>) Returns true if left operand is greater than right
operand.

var2 > var1

Greater than or equal
(>=)

Returns true if left operand is greater than or equal
to right operand.

var2 >= var1
var1 >= 3

Less than (<) Returns true if left operand is less than right
operand.

var1 < var2

Less than or equal (<=) Returns true if left operand is less than or equal to
right operand.

var1 <= var2
var2 <= 5
Chapter 2, Operators 61

Arithmetic Operators
Arithmetic Operators
Arithmetic operators take numerical values (either literals or variables) as their
operands and return a single numerical value. The standard arithmetic
operators are addition (+), subtraction (-), multiplication (*), and division (/).
These operators work as they do in other programming languages.

% (Modulus)

The modulus operator is used as follows:

var1 % var2

The modulus operator returns the first operand modulo the second operand,
that is, var1 modulo var2 , in the preceding statement, where var1 and var2
are variables. The modulo function is the integer remainder of dividing var1 by
var2 . For example, 12 % 5 returns 2.

++ (Increment)

The increment operator is used as follows:

var++ or ++var

This operator increments (adds one to) its operand and returns a value. If used
postfix, with operator after operand (for example, x++), then it returns the
value before incrementing. If used prefix with operator before operand (for
example, ++x), then it returns the value after incrementing.

For example, if x is three, then the statement y = x++ sets y to 3 and
increments x to 4. If x is 3, then the statement y = ++x increments x to 4 and
sets y to 4.

-- (Decrement)

The decrement operator is used as follows:

Implemented in Navigator 2.0
62 JavaScript Reference

Bitwise Operators
var-- or --var

This operator decrements (subtracts one from) its operand and returns a value.
If used postfix (for example, x--), then it returns the value before decrementing.
If used prefix (for example, --x), then it returns the value after decrementing.

For example, if x is three, then the statement y = x-- sets y to 3 and
decrements x to 2. If x is 3, then the statement y = --x decrements x to 2 and
sets y to 2.

- (Unary Negation)
The unary negation operator precedes its operand and negates it. For example,
y = -x negates the value of x and assigns that to y ; that is, if x were 3, y
would get the value -3 and x would retain the value 3.

Bitwise Operators
Bitwise operators treat their operands as a set of bits (zeros and ones), rather
than as decimal, hexadecimal, or octal numbers. For example, the decimal
number nine has a binary representation of 1001. Bitwise operators perform
their operations on such binary representations, but they return standard
JavaScript numerical values.

Table 2.4 summarizes JavaScript’s bitwise operators

Table 2.4 Bitwise operators

Operator Usage Description

Bitwise AND a & b Returns a one in each bit position if bits of
both operands are ones.

Bitwise OR a | b Returns a one in a bit if bits of either
operand is one.

Bitwise XOR a ^ b Returns a one in a bit position if bits of one
but not both operands are one.

Bitwise NOT ~ a Flips the bits of its operand.
Chapter 2, Operators 63

Bitwise Operators
Bitwise Logical Operators

Conceptually, the bitwise logical operators work as follows:

• The operands are converted to thirty-two-bit integers and expressed by a
series of bits (zeros and ones).

• Each bit in the first operand is paired with the corresponding bit in the
second operand: first bit to first bit, second bit to second bit, and so on.

• The operator is applied to each pair of bits, and the result is constructed
bitwise.

For example, the binary representation of nine is 1001, and the binary
representation of fifteen is 1111. So, when the bitwise operators are applied to
these values, the results are as follows:

• 15 & 9 yields 9 (1111 & 1001 = 1001)

• 15 | 9 yields 15 (1111 | 1001 = 1111)

• 15 ^ 9 yields 6 (1111 ^ 1001 = 0110)

Left shift a << b Shifts a in binary representation b bits to
left, shifting in zeros from the right.

Sign-propagating right
shift

a >> b Shifts a in binary representation b bits to
right, discarding bits shifted off.

Zero-fill right shift a >>> b Shifts a in binary representation b bits to
the right, discarding bits shifted off, and
shifting in zeros from the left.

Implemented in Navigator 2.0

Table 2.4 Bitwise operators

Operator Usage Description
64 JavaScript Reference

Bitwise Operators
Bitwise Shift Operators

The bitwise shift operators take two operands: the first is a quantity to be
shifted, and the second specifies the number of bit positions by which the first
operand is to be shifted. The direction of the shift operation is controlled by the
operator used.

Shift operators convert their operands to thirty-two-bit integers and return a
result of the same type as the left operator.

<< (Left Shift)

This operator shifts the first operand the specified number of bits to the left.
Excess bits shifted off to the left are discarded. Zero bits are shifted in from the
right.

For example, 9<<2 yields thirty-six, because 1001 shifted two bits to the left
becomes 100100, which is thirty-six.

>> (Sign-Propagating Right Shift)

This operator shifts the first operand the specified number of bits to the right.
Excess bits shifted off to the right are discarded. Copies of the leftmost bit are
shifted in from the left.

For example, 9>>2 yields two, because 1001 shifted two bits to the right
becomes 10, which is two. Likewise, -9>>2 yields -3, because the sign is
preserved.

>>> (Zero-Fill Right Shift)

This operator shifts the first operand the specified number of bits to the right.
Excess bits shifted off to the right are discarded. Zero bits are shifted in from
the left.

For example, 19>>>2 yields four, because 10011 shifted two bits to the right
becomes 100, which is four. For non-negative numbers, zero-fill right shift and
sign-propagating right shift yield the same result.

Implemented in Navigator 2.0
Chapter 2, Operators 65

Logical Operators
Logical Operators
Logical operators take Boolean (logical) values as operands and return a
Boolean value.

They are described in Table 2.5.

Examples Consider the following script:

<script language="JavaScript1.2">"
v1 = "Cat";
v2 = "Dog";
v3 = false;

document.writeln("t && t returns " + (v1 && v2));
document.writeln("f && t returns " + (v3 && v1));
document.writeln("t && f returns " + (v1 && v3));
document.writeln("f && f returns " + (v3 && (3 == 4)));

document.writeln("t || t returns " + (v1 || v2));
document.writeln("f || t returns " + (v3 || v1));
document.writeln("t || f returns " + (v1 || v3));
document.writeln("f || f returns " + (v3 || (3 == 4)));

document.writeln("!t returns " + (!v1));
document.writeln("!f returns " + (!v3));

</script>

This script displays the following:

t && t returns Dog
f && t returns false
t && f returns false

Implemented in Navigator 2.0

Table 2.5 Logical operators

Operator Usage Description

and (&&) expr1 && expr2 Returns expr1 if it converts to false . Otherwise,
returns expr2 .

or (||) expr1 || expr2 Returns expr1 if it converts to true . Otherwise,
returns expr2 .

not (!) !expr If expr is true, returns false; if expr is false,
returns true.
66 JavaScript Reference

String Operators
f && f returns false
t || t returns Cat
f || t returns Cat
t || f returns Cat
f || f returns false
!t returns false
!f returns true

Short-Circuit Evaluation
As logical expressions are evaluated left to right, they are tested for possible
“short-circuit” evaluation using the following rules:

• false && anything is short-circuit evaluated to false.

• true || anything is short-circuit evaluated to true.

The rules of logic guarantee that these evaluations are always correct. Note that
the anything part of the above expressions is not evaluated, so any side effects
of doing so do not take effect.

String Operators
In addition to the comparison operators, which can be used on string values,
the concatenation operator (+) concatenates two string values together,
returning another string that is the union of the two operand strings. For
example, "my " + "string" returns the string "my string" .

The shorthand assignment operator += can also be used to concatenate strings.
For example, if the variable mystring has the value “alpha,” then the
expression mystring += "bet" evaluates to “alphabet” and assigns this value
to mystring .

Implemented in Navigator 2.0
Chapter 2, Operators 67

Special Operators
Special Operators

?: (Conditional operator)

The conditional operator is the only JavaScript operator that takes three
operands. This operator is frequently used as a shortcut for the if statement.

Syntax condition ? expr1 : expr2

Parameters

Description If condition is true , the operator returns the value of expr1 ; otherwise, it
returns the value of expr2 . For example, to display a different message based
on the value of the isMember variable, you could use this statement:

document.write ("The fee is " + (isMember ? "$2.00" : "$10.00"))

, (Comma operator)

The comma operator is very simple. It evaluates both of its operands and
returns the value of the second operand.

Syntax expr1, expr2

Parameters

Description You can use the comma operator when you want to include multiple
expressions in a location that requires a single expression. The most common
usage of this operator is to supply multiple parameters in a for loop.

Implemented in Navigator 2.0

condition an expression that evaluates to true or false

expr1, expr2 expressions with values of any type.

Implemented in Navigator 2.0

expr1, expr2 Any expressions
68 JavaScript Reference

Special Operators
For example, if a is a 2-dimensional array with 10 elements on a side, the
following code uses the comma operator to increment two variables at once.
The code prints the values of the diagonal elements in the array:

for (var i=0, j=10; i <= 10; i++, j--)
document.writeln("a["+i+","+j+"]= " + a[i,j])

delete

Deletes an object's property or an element at a specified index in an array.

Syntax delete objectName.property
delete objectName[index]
delete property

Parameters

Description The third form is legal only within a with statement.

If the deletion succeeds, the delete operator sets the property or element to
undefined . delete always returns undefined.

new
An operator that lets you create an instance of a user-defined object type or of
one of the built-in object types that has a constructor function.

Syntax objectName = new objectType (param1 [,param2] ...[,paramN])

Arguments

Implemented in Navigator 2.0

objectName The name of an object.

property An existing property.

index An integer representing the location of an element in an array

Implemented in Navigator 2.0

objectName Name of the new object instance.
Chapter 2, Operators 69

Special Operators
Description Creating a user-defined object type requires two steps:

1. Define the object type by writing a function.

2. Create an instance of the object with new.

To define an object type, create a function for the object type that specifies its
name, properties, and methods. An object can have a property that is itself
another object. See the examples below.

You can always add a property to a previously defined object. For example, the
statement car1.color = "black" adds a property color to car1 , and assigns
it a value of "black" . However, this does not affect any other objects. To add
the new property to all objects of the same type, you must add the property to
the definition of the car object type.

You can add a property to a previously defined object type by using the
Function.prototype property. This defines a property that is shared by all
objects created with that function, rather than by just one instance of the object
type. The following code adds a color property to all objects of type car , and
then assigns a value to the color property of the object car1 . For more
information, see prototype

Car.prototype.color=null
car1.color="black"
birthday.description="The day you were born"

Examples Example 1: object type and object instance. Suppose you want to create an
object type for cars. You want this type of object to be called car , and you
want it to have properties for make, model, and year. To do this, you would
write the following function:

function car(make, model, year) {
this.make = make
this.model = model
this.year = year

}

Now you can create an object called mycar as follows:

mycar = new car("Eagle", "Talon TSi", 1993)

objectType Object type. It must be a function that defines an object type.

param1...paramN Property values for the object. These properties are parameters
defined for the objectType function.
70 JavaScript Reference

Special Operators
This statement creates mycar and assigns it the specified values for its
properties. Then the value of mycar.make is the string "Eagle" , mycar.year is
the integer 1993 , and so on.

You can create any number of car objects by calls to new. For example,

kenscar = new car("Nissan", "300ZX", 1992)

Example 2: object property that is itself another object. Suppose you
define an object called person as follows:

function person(name, age, sex) {
this.name = name
this.age = age
this.sex = sex

}

And then instantiate two new person objects as follows:

rand = new person("Rand McNally", 33, "M")
ken = new person("Ken Jones", 39, "M")

Then you can rewrite the definition of car to include an owner property that
takes a person object, as follows:

function car(make, model, year, owner) {
this.make = make;
this.model = model;
this.year = year;
this.owner = owner;

}

To instantiate the new objects, you then use the following:

car1 = new car("Eagle", "Talon TSi", 1993, rand);
car2 = new car("Nissan", "300ZX", 1992, ken)

Instead of passing a literal string or integer value when creating the new
objects, the above statements pass the objects rand and ken as the parameters
for the owners. To find out the name of the owner of car2 , you can access the
following property:

car2.owner.name
Chapter 2, Operators 71

Special Operators
this

A keyword that you can use to refer to the current object. In general, in a
method this refers to the calling object.

Syntax this[.propertyName]

Examples Suppose a function called validate validates an object’s value property, given
the object and the high and low values:

function validate(obj, lowval, hival) {
if ((obj.value < lowval) || (obj.value > hival))

alert("Invalid Value!")
}

You could call validate in each form element’s onChange event handler,
using this to pass it the form element, as in the following example:

Enter a number between 18 and 99:
<INPUT TYPE = "text" NAME = "age" SIZE = 3

onChange="validate(this, 18, 99)">

typeof
The typeof operator is used in either of the following ways:

1. typeof operand
2. typeof (operand)

The typeof operator returns a string indicating the type of the unevaluated
operand. operand is the string, variable, keyword, or object for which the type
is to be returned. The parentheses are optional.

Suppose you define the following variables:

var myFun = new Function("5+2")
var shape="round"
var size=1
var today=new Date()

Implemented in Navigator 2.0

Implemented in Navigator 3.0
72 JavaScript Reference

Special Operators
The typeof operator returns the following results for these variables:

typeof myFun is object
typeof shape is string
typeof size is number
typeof today is object
typeof dontExist is undefined

For the keywords true and null , the typeof operator returns the following
results:

typeof true is boolean
typeof null is object

For a number or string, the typeof operator returns the following results:

typeof 62 is number
typeof 'Hello world' is string

For property values, the typeof operator returns the type of value the property
contains:

typeof document.lastModified is string
typeof window.length is number
typeof Math.LN2 is number

For methods and functions, the typeof operator returns results as follows:

typeof blur is function
typeof eval is function
typeof parseInt is function
typeof shape.split is function

For predefined objects, the typeof operator returns results as follows:

typeof Date is function
typeof Function is function
typeof Math is function
typeof Option is function
typeof String is function

void

The void operator is used in either of the following ways:

1. javascript:void (expression)
2. javascript:void expression
Chapter 2, Operators 73

Special Operators
The void operator specifies an expression to be evaluated without returning a
value. expression is a JavaScript expression to evaluate. The parentheses
surrounding the expression are optional, but it is good style to use them.

You can use the void operator to specify an expression as a hypertext link.
The expression is evaluated but is not loaded in place of the current document.

The following code creates a hypertext link that does nothing when the user
clicks it. When the user clicks the link, void(0) evaluates to 0, but that has no
effect in JavaScript.

Click here to do nothing

The following code creates a hypertext link that submits a form when the user
clicks it.

Click here to submit

Implemented in Navigator 3.0
74 JavaScript Reference

C h a p t e r

3
Statements
This chapter describes all JavaScript statements. JavaScript statements consist of
keywords used with the appropriate syntax. A single statement may span
multiple lines. Multiple statements may occur on a single line if each statement
is separated by a semicolon.

Syntax conventions: All keywords in syntax statements are in bold. Words in
italics represent user-defined names or statements. Any portions enclosed in
square brackets, [], are optional. {statements} indicates a block of statements,
which can consist of a single statement or multiple statements delimited by a
curly braces { }.

Table 3.1 lists statements available in JavaScript.

Table 3.1 JavaScript statements.

break Statement that terminates the current while or for loop and
transfers program control to the statement following the terminated
loop.

comment Notations by the author to explain what a script does. Comments
are ignored by the interpreter.

continue Statement that terminates execution of the block of statements in a
while or for loop, and continues execution of the loop with the
next iteration.

delete Deletes an object’s property or an element of an array.
Chapter 3, Statements 75

do...while Executes its statements until the test condition evaluates to false.
Statement is executed at least once.

export Allows a signed script to provide properties, functions, and objects
to other signed or unsigned scripts.

for Statement that creates a loop that consists of three optional
expressions, enclosed in parentheses and separated by semicolons,
followed by a block of statements executed in the loop.

for...in Statement that iterates a specified variable over all the properties of
an object. For each distinct property, JavaScript executes the
specified statements.

function Statement that declares a JavaScript function name with the
specified parameters. Acceptable parameters include strings,
numbers, and objects.

if...else Statement that executes a set of statements if a specified condition
is true. If the condition is false, another set of statements can be
executed.

import Allows a script to import properties, functions, and objects from a
signed script which has exported the information.

labeled Provides an identifier that can be used with break or continue to
indicate where the program should continue execution.

return Statement that specifies the value to be returned by a function.

switch Allows a program to evaluate an expression and attempt to match
the expression's value to a case label.

var Statement that declares a variable, optionally initializing it to a
value.

while Statement that creates a loop that evaluates an expression, and if it
is true, executes a block of statements.

with Statement that establishes the default object for a set of statements.

Table 3.1 JavaScript statements. (Continued)
76 JavaScript Reference

break
break
Terminates the current while or for loop and transfers program control to the
statement following the terminated loop.

Syntax break
break label

Parameter

Description The break statement can now include an optional label that allows the
program to break out of a labeled statement. This type of break must be in a
statement identified by the label used by break.

The statements in a labeled statement can be of any type.

Examples The following function has a break statement that terminates the while loop
when e is 3, and then returns the value 3 * x .

function testBreak(x) {
var i = 0
while (i < 6) {

if (i == 3)
break

i++
}
return i*x

}

In the following example, a statement labeled checkiandj contains a statement
labeled checkj . If break is encountered, the program breaks out of the
checkj statement and continues with the remainder of the checkiandj
statement. If break had a label of checkiandj , the program would break out
of the checkiandj statement and continue at the statement following
checkiandj .

checkiandj :
if (4==i) {

document.write("You've entered " + i + ".
");
checkj :

if (2==j) {
document.write("You've entered " + j + ".
");

Implemented in Navigator 2.0, LiveWire 1.0

label Identifier associated with the label of the statement.
Chapter 3, Statements 77

comment
break checkj;
document.write("The sum is " + (i+j) + ".
");

}
document.write(i + "-" + j + "=" + (i-j) + ".
");

}

See also labeled , switch

comment
Notations by the author to explain what a script does. Comments are ignored
by the interpreter.

Syntax // comment text
/* multiple line comment text */

Description JavaScript supports Java-style comments:

• Comments on a single line are preceded by a double-slash (//).

• Comments that span multiple lines are preceded by a /* and followed by a
*/.

Examples // This is a single-line comment.
/* This is a multiple-line comment. It can be of any length, and
you can put whatever you want here. */

continue
Terminates execution of the block of statements in a while or for loop, and
continues execution of the loop with the next iteration.

Syntax continue
continue label

Implemented in Navigator 2.0, LiveWire 1.0

Implemented in Navigator 2.0, LiveWire 1.0
78 JavaScript Reference

continue
Parameter

Description In contrast to the break statement, continue does not terminate the execution
of the loop entirely: instead,

• In a while loop, it jumps back to the condition .

• In a for loop, it jumps to the update expression.

The continue statement can now include an optional label that allows the
program to terminate execution of a labeled statement and continue to the
specified labeled statement. This type of continue must be in a looping
statement identified by the label used by continue .

Examples The following example shows a while loop that has a continue statement that
executes when the value of i is 3. Thus, n takes on the values 1, 3, 7, and 12.

i = 0
n = 0
while (i < 5) {

i++
if (i == 3)

continue
n += i

}

In the following example, a statement labeled checkiandj contains a statement
labeled checkj . If continue is encountered, the program continues at the top
of the checkj statement. Each time continue is encountered, checkj
reiterates until its condition returns false. When false is returned, the remainder
of the checkiandj statement is completed. checkiandj reiterates until its
condition returns false. When false is returned, the program continues at the
statement following checkiandj.

If continue had a label of checkiandj , the program would continue at the top
of the checkiandj statement.

checkiandj :
while (i<4) {

document.write(i + "
");
i+=1;

checkj :
while (j>4) {

document.write(j + "
");

label Identifier associated with the label of the statement.
Chapter 3, Statements 79

delete
j-=1;
if ((j%2)==0)

continue checkj;
document.write(j + " is odd.
");

}
document.write("i = " + i + "
");
document.write("j = " + j + "
");

}

See also labeled

delete
Deletes an object’s property or an element at a specified index in an array.

Syntax delete objectName.property
delete objectName[index]
delete property

Parameters

Description If the delete operator succeeds, it sets the property of element to undefined ;
the operator always returns undefined .

You can only use the delete operator to delete object properties and array
entries. You cannot use this operator to delete objects or variables.
Consequently, you can only use the third form within a with statement, to
delete a property from the object.

Implemented in Navigator 4.0, Netscape Server 3.0

objectName An object from which to delete the specified property or value.

property The property to delete.

index An integer index into an array.
80 JavaScript Reference

do...while
do...while
Executes its statements until the test condition evaluates to false. Statement is
executed at least once.

Syntax do
statement

while (condition);

Parameters

Example In the following example, the do loop iterates at least once and reiterates until i
is no longer less than 5.

do {
i+=1
document.write(i);

while (i<5);

export
Allows a signed script to provide properties, functions, and objects to other
signed or unsigned scripts.

Syntax export name1, name2, ..., nameN
export *

Parameters

Implemented in Navigator 4.0, Netscape Server 3.0

statement Block of statements that is executed at least once and is re-executed
each time the condition evaluates to true.

condition Evaluated after each pass through the loop. If condition evaluates to
true, the statements in the preceding block are re-executed. When
condition evaluates to false, control passes to the statement
following do while .

Implemented in Navigator 4.0, Netscape Server 3.0

nameN List of properties, functions, and objects to be exported.
Chapter 3, Statements 81

for
Description Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting properties, functions, or objects, a signed
script makes this information available to any script (signed or unsigned). The
receiving script uses the companion import statement to access the information.

See also import

for
Creates a loop that consists of three optional expressions, enclosed in
parentheses and separated by semicolons, followed by a block of statements
executed in the loop.

Syntax for ([initial-expression;] [condition;] [increment-expression])
{

statements
}

Parameters

Examples The following for statement starts by declaring the variable i and initializing it
to 0. It checks that i is less than nine, performs the two succeeding statements,
and increments i by 1 after each pass through the loop.

* Exports all properties, functions, and objects from the script.

Implemented in Navigator 2.0, LiveWire 1.0

initial-expression Statement or variable declaration. Typically used to initialize a
counter variable. This expression may optionally declare new
variables with the var keyword.

condition Evaluated on each pass through the loop. If this condition
evaluates to true, the statements in statements are
performed. This conditional test is optional. If omitted, the
condition always evaluates to true.

increment-expression Generally used to update or increment the counter variable.

statements Block of statements that are executed as long as condition
evaluates to true. This can be a single statement or multiple
statements. Although not required, it is good practice to indent
these statements from the beginning of the for statement.
82 JavaScript Reference

for...in
for (var i = 0; i < 9; i++) {
n += i
myfunc(n)

}

for...in
Iterates a specified variable over all the properties of an object. For each
distinct property, JavaScript executes the specified statements.

Syntax for (variable in object) {
statements}

Parameters

Examples The following function takes as its argument an object and the object’s name. It
then iterates over all the object’s properties and returns a string that lists the
property names and their values.

function dump_props(obj, objName) {
var result = ""
for (var i in obj) {

result += objName + "." + i + " = " + obj[i] + "
"
}
result += "<HR>"
return result

}

function
Declares a JavaScript function with the specified parameters. Acceptable
parameters include strings, numbers, and objects.

Implemented in Navigator 2.0, LiveWire 1.0

variable Variable to iterate over every property.

object Object for which the properties are iterated.

statements Specifies the statements to execute for each property.

Implemented in Navigator 2.0, LiveWire 1.0
Chapter 3, Statements 83

if...else
Syntax function name([param] [, param] [..., param]) {
statements}

Parameters

Description To return a value, the function must have a return statement that specifies the
value to return. You cannot nest a function statement in another statement or in
itself.

All parameters are passed to functions, by value. In other words, the value is
passed to the function, but if the function changes the value of the parameter,
this change is not reflected globally or in the calling function.

In addition to defining functions as described here, you can also define
Function objects.

Examples //This function returns the total dollar amount of sales, when
//given the number of units sold of products a, b, and c.
function calc_sales(units_a, units_b, units_c) {

return units_a*79 + units_b*129 + units_c*699
}

if...else
Executes a set of statements if a specified condition is true. If the condition is
false, another set of statements can be executed.

Syntax if (condition) {
statements1}

[else {
statements2}]

name The function name.

param The name of an argument to be passed to the function. A function can have up
to 255 arguments.

Implemented in Navigator 2.0, LiveWire 1.0
84 JavaScript Reference

import
Parameters

Examples if (cipher_char == from_char) {
result = result + to_char
x++}

else
result = result + clear_char

import
Allows a script to import properties, functions, and objects from a signed script
which has exported the information.

Syntax import objectName.name1, objectName.name2, ..., objectName.nameN
import objectName.*

Parameters

Description The objectName parameter is the name of the object that will receive the
imported names. For example, if f and p have been exported, and if obj is an
object from the importing script, then

import obj.f, obj.p

makes f and p accessible in the importing script as properties of obj .

condition Can be any JavaScript expression that evaluates to true or false.
Parentheses are required around the condition. If condition evaluates to
true, the statements in statements1 are executed.

statements1
statements2

Can be any JavaScript statements, including further nested if
statements. Multiple statements must be enclosed in braces.

Implemented in Navigator 4.0, Netscape Server 3.0

nameN List of properties, functions, and objects to import from the export file.

objectName Name of the object that will receive the imported names.

* imports all properties, functions, and objects from the export script.
Chapter 3, Statements 85

labeled
Typically, information in a signed script is available only to scripts signed by
the same principals. By exporting (using the export statement) properties,
functions, or objects, a signed script makes this information available to any
script (signed or unsigned). The receiving script uses the import statement to
access the information.

The script must load the export script into a window, frame, or layer before it
can import and use any exported properties, functions, and objects.

See also export

labeled
Provides an identifier that can be used with break or continue to indicate
where the program should continue execution.

In a labeled statement, break or continue must be followed with a label, and
the label must be the identifier of the labeled statement containing break or
continue .

Syntax label :
statement

Parameter

Example For an example of a labeled statement using break , see break . For an example
of a labeled statement using continue , see continue .

See also break , continue

Implemented in Navigator 4.0, Netscape Server 3.0

statement Block of statements. break can be used with any labeled statement, and
continue can be used with looping labeled statements.
86 JavaScript Reference

return
return
Specifies the value to be returned by a function.

Syntax return expression

Parameters

Examples The following function returns the square of its argument, x , where x is a
number.

function square(x) {
return x * x

}

switch
Allows a program to evaluate an expression and attempt to match the
expression's value to a case label.

Syntax switch (expression){
case label :

statement;
break;

case label :
statement;
break;

...
default : statement;

}

Parameters

Implemented in Navigator 2.0, LiveWire 1.0

expression The expression to return.

Implemented in Navigator 4.0, Netscape Server 3.0

expression Value matched against label.

label Identifier used to match against expression.

statement Any statement.
Chapter 3, Statements 87

var
Description If a match is found, the program executes the associated statement.

The program first looks for a label matching the value of expression and then
executes the associated statement. If no matching label is found, the program
looks for the optional default statement, and if found, executes the associated
statement. If no default statement is found, the program continues execution at
the statement following the end of switch .

The optional break statement associated with each case label ensures that the
program breaks out of switch once the matched statement is executed and
continues execution at the statement following switch. If break is omitted, the
program continues execution at the next statement in the switch statement.

Example In the following example, if expression evaluates to "Bananas," the program
matches the value with case "Bananas" and executes the associated statement.
When break is encountered, the program breaks out of switch and executes
the statement following switch . If break were omitted, the statement for case
"Cherries" would also be executed.

switch (i) {
case "Oranges" :

document.write("Oranges are $0.59 a pound.
");
break;

case "Apples" :
document.write("Apples are $0.32 a pound.
");
break;

case "Bananas" :
document.write("Bananas are $0.48 a pound.
");
break;

case "Cherries" :
document.write("Cherries are $3.00 a pound.
");
break;

default :
document.write("Sorry, we are out of " + i + ".
");

}
document.write("Is there anything else you'd like?
");

var
Declares a variable, optionally initializing it to a value.

Syntax var varname [= value] [..., varname [= value]]

Implemented in Navigator 2.0, LiveWire 1.0
88 JavaScript Reference

while
Parameters

Description The scope of a variable is the current function or, for variables declared outside
a function, the current application.

Using var outside a function is optional; you can declare a variable by simply
assigning it a value. However, it is good style to use var , and it is necessary in
functions if a global variable of the same name exists.

Examples var num_hits = 0, cust_no = 0

while
Creates a loop that evaluates an expression, and if it is true, executes a block of
statements. The loop then repeats, as long as the specified condition is true.

Syntax while (condition) {
statements

}

Parameters

Examples The following while loop iterates as long as n is less than three.

n = 0
x = 0
while(n < 3) {

n ++

varname Variable name. It can be any legal identifier.

value Initial value of the variable and can be any legal expression.

Implemented in Navigator 2.0, LiveWire 1.0

condition Evaluated before each pass through the loop. If this condition evaluates
to true, the statements in the succeeding block are performed. When
condition evaluates to false, execution continues with the statement
following statements .

statements Block of statements that are executed as long as the condition evaluates
to true. Although not required, it is good practice to indent these
statements from the beginning of the statement.
Chapter 3, Statements 89

with
x += n
}

Each iteration, the loop increments n and adds it to x . Therefore, x and n take
on the following values:

• After the first pass: n = 1 and x = 1

• After the second pass: n = 2 and x = 3

• After the third pass: n = 3 and x = 6

After completing the third pass, the condition n < 3 is no longer true, so the
loop terminates.

with
Establishes the default object for a set of statements. Within the set of
statements, any property references that do not specify an object are assumed
to be for the default object.

Syntax with (object){
statements

}

Parameters

Examples The following with statement specifies that the Math object is the default
object. The statements following the with statement refer to the PI property
and the cos and sin methods, without specifying an object. JavaScript assumes
the Math object for these references.

var a, x, y
var r=10
with (Math) {

a = PI * r * r
x = r * cos(PI)

Implemented in Navigator 2.0, LiveWire 1.0

object Specifies the default object to use for the statements. The parentheses
around object are required.

statements Any block of statements.
90 JavaScript Reference

with
y = r * sin(PI/2)
}

Chapter 3, Statements 91

with
92 JavaScript Reference

C h a p t e r

4
Core
This chapter includes the JavaScript core objects Array , Boolean , Date ,
Function , Math , Number, Object , and String . These objects are used in both
client-side and server-side JavaScript.

Table 4.1 summarizes the objects in this chapter.

Table 4.1 Core objects

Object Description

Array Represents an array.

Boolean Represents a Boolean value.

Date Represents a date.

Function Specifies a string of JavaScript code to be compiled as a function.

Math Provides basic math constants and functions; for example, its PI
property contains the value of pi.

Number Represents primitive numeric values.

Object Contains the base functionality shared by all JavaScript objects.

RegExp Represents a regular expression; also contains static properties that
are shared among all regular expression objects.

String Represents a JavaScript string.
Chapter 4, Core 93

Array
Array
Represents an array of elements.

Created by The Array object constructor:

new Array(arrayLength);
new Array(element0, element1, ..., element N);

Parameters

Description In Navigator 3.0, you can specify an initial length when you create the array.
The following code creates an array of five elements:

billingMethod = new Array(5)

When you create an array, all of its elements are initially null. The following
code creates an array of 25 elements, then assigns values to the first three
elements:

musicTypes = new Array(25)
musicTypes[0] = "R&B"
musicTypes[1] = "Blues"
musicTypes[2] = "Jazz"

However, in Navigator 4.0, if you specify LANGUAGE="JavaScript1.2" in the
<SCRIPT> tag, using new Array(1) creates a new array with a[0]=1 .

An array’s length increases if you assign a value to an element higher than the
current length of the array. The following code creates an array of length 0,
then assigns a value to element 99. This changes the length of the array to 100.

colors = new Array()
colors[99] = "midnightblue"

Core object

Implemented in Navigator 3.0, LiveWire 1.0

arrayLength (Optional) The initial length of the array. You can access this value
using the length property.

element N (Optional) A list of values for the array’s elements. When this form is
specified, the array is initialized with the specified values as its
elements, and the array’s length property is set to the number of
arguments.
94 JavaScript Reference

Array
You can construct a dense array of two or more elements starting with index 0
if you define initial values for all elements. A dense array is one in which each
element has a value. The following code creates a dense array with three
elements:

myArray = new Array("Hello", myVar, 3.14159)

In Navigator 2.0, you must index an array by its ordinal number, for example
document.forms[0] . In Navigator 3.0 and later, you can index an array by
either its ordinal number or by its name (if defined). For example, assume you
define the following array:

myArray = new Array("Wind","Rain","Fire")

You can then refer to the first element of the array as myArray[0] or
myArray["Wind"] .

In Navigator 4.0, the result of a match between a regular expression and a
string can create an array. This array has properties and elements that provide
information about the match. An array is the return value of RegExp.exec ,
String.match , and String.replace . To help explain these properties and
elements, look at the following example and then refer to the table below:

<SCRIPT LANGUAGE="JavaScript1.2">
//Match one d followed by one or more b's followed by one d
//Remember matched b's and the following d
//Ignore case

myRe=/d(b+)(d)/i;
myArray = myRe.exec("cdbBdbsbz");

</SCRIPT>

The properties and elements returned from this match are as follows:

Property/Element Description Example

input A read-only property that reflects the
original string against which the regular
expression was matched.

cdbBdbsbz

index A read-only property that is the zero-based
index of the match in the string.

1

Chapter 4, Core 95

Array
Property
Summary

Method Summary

[0] A read-only element that specifies the last
matched characters.

dbBd

[1], ...[n] Read-only elements that specify the
parenthesized substring matches, if
included in the regular expression. The
number of possible parenthesized
substrings is unlimited.

[1]=bB
[2]=d

Property/Element Description Example

Property Description

index For an array created by a regular expression match, the zero-based
index of the match in the string.

input For an array created by a regular expression match, reflects the
original string against which the regular expression was matched.

length Reflects the number of elements in an array

prototype Allows the addition of properties to an Array object.

Method Description

concat Joins two arrays and returns a new array.

join Joins all elements of an array into a string.

pop Removes the last element from an array and returns that element.

push Adds one or more elements to the end of an array and returns that last
element added.

reverse Transposes the elements of an array: the first array element becomes
the last and the last becomes the first.

shift Removes the first element from an array and returns that element

slice Extracts a section of an array and returns a new array.

splice Adds and/or removes elements from an array.

sort Sorts the elements of an array.
96 JavaScript Reference

Array
Examples Example 1. The following example creates an array, msgArray , with a length
of 0, then assigns values to msgArray[0] and msgArray[99] , changing the
length of the array to 100.

msgArray = new Array()
msgArray [0] = "Hello"
msgArray [99] = "world"
// The following statement is true,
// because defined msgArray [99] element.
if (msgArray .length == 100)

document.write("The length is 100.")

See also examples for onError .

Example 2: Two-dimensional array. The following code creates a two-
dimensional array and displays the results.

a = new Array(4)
for (i=0; i < 4; i++) {

a[i] = new Array(4)
for (j=0; j < 4; j++) {

a[i][j] = "["+i+","+j+"]"
}

}
for (i=0; i < 4; i++) {

str = "Row "+i+":"
for (j=0; j < 4; j++) {

str += a[i][j]
}
document.write(str,"<p>")

}

This example displays the following results:

Multidimensional array test
Row 0:[0,0][0,1][0,2][0,3]
Row 1:[1,0][1,1][1,2][1,3]
Row 2:[2,0][2,1][2,2][2,3]
Row 3:[3,0][3,1][3,2][3,3]

See also Image

toStrin
g

Returns a string representing the specified object.

unshift Adds one or more elements to the front of an array and returns the
new length of the array.

Method Description
Chapter 4, Core 97

Array
Properties

index

For an array created by a regular expression match, the zero-based index of the
match in the string.

input

For an array created by a regular expression match, reflects the original string
against which the regular expression was matched.

length

An integer that specifies the number of elements in an array. You can set the
length property to truncate an array at any time. You cannot extend an array;
for example, if you set length to 3 when it is currently 2, the array will still
contain only 2 elements.

Examples In the following example, the getChoice function uses the length property to
iterate over every element in the musicType array. musicType is a select
element on the musicForm form.

function getChoice() {
for (var i = 0; i < document.musicForm.musicType.length; i++) {

if (document.musicForm.musicType.options[i].selected == true) {
return document.musicForm.musicType.options[i].text

}

Property of Array

Static

Implemented in Navigator 4.0, Netscape Server 3.0

Property of Array

Static

Implemented in Navigator 4.0, Netscape Server 3.0

Property of Array

Implemented in Navigator 3.0, LiveWire 1.0
98 JavaScript Reference

Array
}
}

The following example shortens the array statesUS to a length of 50 if the
current length is greater than 50.

if (statesUS.length > 50) {
statesUS.length=50
alert("The U.S. has only 50 states. New length is " +

statesUS.length)
}

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

Methods

concat

Joins two arrays and returns a new array.

Syntax concat(arrayName2)

Parameters

Description concat does not alter the original arrays, but returns a “one level deep” copy
that contains copies of the same elements combined from the original arrays.
Elements of the original arrays are copied into the new array as follows:

Property of Array

Implemented in Navigator 3.0, LiveWire 1.0

Method of Array

Implemented in Navigator 4.0, Netscape Server 3.0

arrayName2 Name of the array to concatenate to this array.
Chapter 4, Core 99

Array
• Object references (and not the actual object) -- concat copies object
references into the new array. Both the original and new array refer to the
same object. If a referenced object changes, the changes are visible to both
the new and original arrays.

• Strings and numbers (not String and Number objects)-- concat copies
strings and numbers into the new array. Changes to the string or number in
one array does not affect the other arrays.

If a new element is added to either array, the other array is not affected.

join

Joins all elements of an array into a string.

Syntax join(separator)

Parameters

Description The string conversion of all array elements are joined into one string.

Examples The following example creates an array, a with three elements, then joins the
array three times: using the default separator, then a comma and a space, and
then a plus.

a = new Array("Wind","Rain","Fire")
document.write(a.join() +"
")
document.write(a.join(", ") +"
")
document.write(a.join(" + ") +"
")

This code produces the following output:

Wind,Rain,Fire
Wind, Rain, Fire
Wind + Rain + Fire

See also Array.reverse

Method of Array

Implemented in Navigator 3.0, LiveWire 1.0

separator Specifies a string to separate each element of the array. The separator is
converted to a string if necessary. If omitted, the array elements are
separated with a comma.
100 JavaScript Reference

Array
pop

Removes the last element from an array and returns that element. This method
changes the length of the array.

Syntax pop()

Parameters None.

Example The following code displays the myFish array before and after removing its last
element. It also displays the removed element:

myFish = ["angel", "clown", "mandarin", "surgeon"];
document.writeln("myFish before: " + myFish);
popped = myFish.pop();
document.writeln("myFish after: " + myFish);
document.writeln("popped this element: " + popped);

This example displays the following:

myFish before: ["angel", "clown", "mandarin", "surgeon"]
myFish after: ["angel", "clown", "mandarin"]
popped this element: surgeon

See also push , shift , unshift

push

Adds one or more elements to the end of an array and returns that last element
added. This method changes the length of the array.

Syntax push(elt1, ..., elt N)

Parameters

Method of Array

Implemented in Navigator 4.0, Netscape Server 3.0

Method of Array

Implemented in Navigator 4.0, Netscape Server 3.0

elt1, ..., elt NThe elements to add to the end of the array.
Chapter 4, Core 101

Array
Description The behavior of the push method is analogous to the push function in Perl 4.
Note that this behavior is different in Perl 5.

Example The following code displays the myFish array before and after adding elements
to its end. It also displays the last element added:

myFish = ["angel", "clown"];
document.writeln("myFish before: " + myFish);
pushed = myFish.push("drum", "lion");
document.writeln("myFish after: " + myFish);
document.writeln("pushed this element last: " + pushed);

This example displays the following:

myFish before: ["angel", "clown"]
myFish after: ["angel", "clown", "drum", "lion"]
pushed this element last: lion

See also pop , shift , unshift

reverse

Transposes the elements of an array: the first array element becomes the last
and the last becomes the first.

Syntax reverse()

Parameters None

Description The reverse method transposes the elements of the calling array object.

Examples The following example creates an array myArray , containing three elements,
then reverses the array.

myArray = new Array("one", "two", "three")
myArray.reverse()

This code changes myArray so that:

• myArray[0] is "three"

• myArray[1] is "two"

• myArray[2] is "one"

Method of Array

Implemented in Navigator 3.0, LiveWire 1.0
102 JavaScript Reference

Array
See also Array.join , Array.sort

shift

Removes the first element from an array and returns that element. This method
changes the length of the array.

Syntax shift()

Parameters None.

Example The following code displays the myFish array before and after removing its first
element. It also displays the removed element:

myFish = ["angel", "clown", "mandarin", "surgeon"];
document.writeln("myFish before: " + myFish);
shifted = myFish.shift();
document.writeln("myFish after: " + myFish);
document.writeln("Removed this element: " + shifted);

This example displays the following:

myFish before: ["angel", "clown", "mandarin", "surgeon"]
myFish after: ["clown", "mandarin", "surgeon"]
Removed this element: angel

See also pop , push , unshift

slice

Extracts a section of an array and returns a new array.

Syntax slice(begin,end)

Parameters

Method of Array

Implemented in Navigator 4.0, Netscape Server 3.0

Method of Array

Implemented in Navigator 4.0, Netscape Server 3.0

begin Zero-based index at which to begin extraction.
Chapter 4, Core 103

Array
Description slice does not alter the original array, but returns a new "one level deep" copy
that contains copies of the elements sliced from the original array. Elements of
the original array are copied into the new array as follows:

Object references (and not the actual object) -- slice copies object references
into the new array. Both the original and new array refer to the same object. If
a referenced object changes, the changes are visible to both the new and
original arrays.

Strings and numbers (not String and Number objects)-- slice copies strings
and numbers into the new array. Changes to the string or number in one array
does not affect the other array.

If a new element is added to either array, the other array is not affected.

Example In the following example, slice creates a new array, newCar , from myCar.
Both include a reference to the object myHonda. When the color of myHonda is
changed to purple , both arrays reflect the change.

<SCRIPT LANGUAGE="JavaScript1.2">

//Using slice, create newCar from myCar.
myHonda = {color:"red",wheels:4,engine:{cylinders:4,size:2.2}}
myCar = [myHonda, 2, "cherry condition", "purchased 1997"]
newCar = myCar.slice(0,2)

//Write the values of myCar, newCar, and the color of myHonda
// referenced from both arrays.
document.write("myCar = " + myCar + "
")
document.write("newCar = " + newCar + "
")
document.write("myCar[0].color = " + myCar[0].color + "
")
document.write("newCar[0].color = " + newCar[0].color + "

")

//Change the color of myHonda.
myHonda.color = "purple"
document.write("The new color of my Honda is " + myHonda.color +
"

")

end (Optional) Zero-based index at which to end extraction:

• slice extracts up to but not including end . slice(1,4) extracts
the second element through the fourth element (elements indexed 1,
2, and 3)

• As a negative index, end indicates an offset from the end of the
sequence. slice(2,-1) extracts the third element through the
second to last element in the sequence.

• If end is omitted, slice extracts to the end of the sequence.
104 JavaScript Reference

Array
//Write the color of myHonda referenced from both arrays.
document.write("myCar[0].color = " + myCar[0].color + "
")
document.write("newCar[0].color = " + newCar[0].color + "
")

</SCRIPT>

This script writes:

myCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2,
"cherry condition", "purchased 1997"]

newCar = [{color:"red", wheels:4, engine:{cylinders:4, size:2.2}}, 2]
myCar[0].color = red newCar[0].color = red
The new color of my Honda is purple
myCar[0].color = purple
newCar[0].color = purple

splice

Changes the content of an array, adding new elements while removing old
elements.

Syntax splice(index, howMany, newElt1, ..., newElt N)

Parameters

Description If you specify a different number of elements to insert than the number you’re
removing, the array will have a different length at the end of the call.

If howMany is 1, this method returns the single element that it removes. If
howMany is more than 1, the method returns an array containing the removed
elements.

Examples The following script illustrate the use of splice :

Method of Array

Implemented in Navigator 4.0, Netscape Server 3.0

index Index at which to start changing the array.

howMany An integer indicating the number of old array elements to
remove. If howMany is 0, no elements are removed. In this
case, you should specify at least one new element.

newElt1, ..., newElt N(Optional) The elements to add to the array. If you don’t
specify any elements, splice simply removes elements from the
array.
Chapter 4, Core 105

Array
<SCRIPT LANGUAGE="JavaScript1.2">

myFish = ["angel", "clown", "mandarin", "surgeon"];
document.writeln("myFish: " + myFish + "
");

removed = myFish.splice(2, 0, "drum");
document.writeln("After adding 1: " + myFish);
document.writeln("removed is: " + removed + "
");

removed = myFish.splice(3, 1)
document.writeln("After removing 1: " + myFish);
document.writeln("removed is: " + removed + "
");

removed = myFish.splice(2, 1, "trumpet")
document.writeln("After replacing 1: " + myFish);
document.writeln("removed is: " + removed + "
");

removed = myFish.splice(0, 2, "parrot", "anemone", "blue")
document.writeln("After replacing 2: " + myFish);
document.writeln("removed is: " + removed);

</SCRIPT>

This script displays:

myFish: ["angel", "clown", "mandarin", "surgeon"]

After adding 1: ["angel", "clown", "drum", "mandarin", "surgeon"]
removed is: undefined

After removing 1: ["angel", "clown", "drum", "surgeon"]
removed is: mandarin

After replacing 1: ["angel", "clown", "trumpet", "surgeon"]
removed is: drum

After replacing 2: ["parrot", "anemone", "blue", "trumpet", "surgeon"]
removed is: ["angel", "clown"]

sort

Sorts the elements of an array.

Syntax sort(compareFunction)

Method of Array

Implemented in Navigator 3.0, LiveWire 1.0
Navigator 4.0: modified behavior.
106 JavaScript Reference

Array
Parameters

Description If compareFunction is not supplied, elements are sorted by converting them to
strings and comparing strings in lexicographic (“dictionary” or “telephone
book,” not numerical) order. For example, “80” comes before “9” in
lexicographic order, but in a numeric sort 9 comes before 80.

If compareFunction is supplied, the array elements are sorted according to the
return value of the compare function. If a and b are two elements being
compared, then:

• If compareFunction(a, b) is less than 0, sort b to a lower index than a.

• If compareFunction(a, b) returns 0, leave a and b unchanged with
respect to each other, but sorted with respect to all different elements.

• If compareFunction(a, b) is greater than 0, sort b to a higher index than
a.

So, the compare function has the following form:

function compare(a, b) {
if (a is less than b by some ordering criterion)

return -1
if (a is greater than b by the ordering criterion)

return 1
// a must be equal to b
return 0

}

To compare numbers instead of strings, the compare function can simply
subtract b from a:

function compareNumbers(a, b) {
return a - b

}

JavaScript uses a stable sort: the index partial order of a and b does not change
if a and b are equal. If a’s index was less than b’s before sorting, it will be after
sorting, no matter how a and b move due to sorting.

The behavior of the sort method changed between Navigator 3.0 and
Navigator 4.0.

compareFunction Specifies a function that defines the sort order. If omitted, the array
is sorted lexicographically (in dictionary order) according to the
string conversion of each element.
Chapter 4, Core 107

Array
In Navigator 3.0, on some platforms, the sort method does not work. This
method works on all platforms for Navigator 4.0.

In Navigator 4.0, this method no longer converts undefined elements to null;
instead it sorts them to the high end of the array. For example, assume you
have this script:

<SCRIPT>
a = new Array();
a[0] = "Ant";
a[5] = "Zebra";

function writeArray(x) {
for (i = 0; i < x.length; i++) {

document.write(x[i]);
if (i < x.length-1) document.write(", ");

}
}

writeArray(a);
a.sort();
document.write("

");
writeArray(a);
</SCRIPT>

In Navigator 3.0, JavaScript prints:

ant, null, null, null, null, zebra
ant, null, null, null, null, zebra

In Navigator 4.0, JavaScript prints:

ant, undefined, undefined, undefined, undefined, zebra
ant, zebra, undefined, undefined, undefined, undefined

Examples The following example creates four arrays and displays the original array, then
the sorted arrays. The numeric arrays are sorted without, then with, a compare
function.

<SCRIPT>
stringArray = new Array("Blue","Humpback","Beluga")
numericStringArray = new Array("80","9","700")
numberArray = new Array(40,1,5,200)
mixedNumericArray = new Array("80","9","700",40,1,5,200)

function compareNumbers(a, b) {
return a - b

}

document.write("stringArray: " + stringArray.join() +"
")
document.write("Sorted: " + stringArray.sort() +"<P>")
108 JavaScript Reference

Array
document.write("numberArray: " + numberArray.join() +"
")
document.write("Sorted without a compare function: " + numberArray.sort() +"
")
document.write("Sorted with compareNumbers: " + numberArray.sort(compareNumbers)
+"<P>")

document.write("numericStringArray: " + numericStringArray.join() +"
")
document.write("Sorted without a compare function: " + numericStringArray.sort()
+"
")
document.write("Sorted with compareNumbers: " +
numericStringArray.sort(compareNumbers) +"<P>")

document.write("mixedNumericArray: " + mixedNumericArray.join() +"
")
document.write("Sorted without a compare function: " + mixedNumericArray.sort()
+"
")
document.write("Sorted with compareNumbers: " +
mixedNumericArray.sort(compareNumbers) +"
")
</SCRIPT>

This example produces the following output. As the output shows, when a
compare function is used, numbers sort correctly whether they are numbers or
numeric strings.

stringArray: Blue,Humpback,Beluga
Sorted: Beluga,Blue,Humpback

numberArray: 40,1,5,200
Sorted without a compare function: 1,200,40,5
Sorted with compareNumbers: 1,5,40,200

numericStringArray: 80,9,700
Sorted without a compare function: 700,80,9
Sorted with compareNumbers: 9,80,700

mixedNumericArray: 80,9,700,40,1,5,200
Sorted without a compare function: 1,200,40,5,700,80,9
Sorted with compareNumbers: 1,5,9,40,80,200,700

See also Array.join , Array.reverse

toString

Returns a string representing the specified object.

Syntax toString()

Parameters None.

Method of Array

Implemented in Navigator 3.0, LiveWire 1.0
Chapter 4, Core 109

Array
Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use toString within your own code to convert an object into a string,
and you can create your own function to be called in place of the default
toString method.

For Array objects, the built-in toString method joins the array and returns
one string containing each array element separated by commas. For example,
the following code creates an array and uses toString to convert the array to a
string while writing output.

var monthNames = new Array("Jan","Feb","Mar","Apr")
document.write("monthNames.toString() is " + monthNames.toString())

The output is as follows:

monthNames.toString() is Jan,Feb,Mar,Apr

For information on defining your own toString method, see the
Object.toString method.

unshift

Adds one or more elements to the beginning of an array and returns the new
length of the array.

Syntax arrayName.unshift(elt1,..., elt N)

Parameters

Example The following code displays the myFish array before and after adding elements
to it.

myFish = ["angel", "clown"];
document.writeln("myFish before: " + myFish);
unshifted = myFish.unshift("drum", "lion");
document.writeln("myFish after: " + myFish);
document.writeln("New length: " + unshifted);

Method of Array

Implemented in Navigator 4.0, Netscape Server 3.0

elt1,...,elt N The elements to add to the front of the array.
110 JavaScript Reference

Boolean
This example displays the following:

myFish before: ["angel", "clown"]
myFish after: ["drum", "lion", "angel", "clown"]
New length: 4

See also pop , push , shift

Boolean
The Boolean object is an object wrapper for a boolean value.

Created by The Boolean constructor:

new Boolean(value)

Parameters

Description Use a Boolean object when you need to convert a non-boolean value to a
boolean value. You can use the Boolean object any place JavaScript expects a
primitive boolean value. JavaScript returns the primitive value of the Boolean
object by automatically invoking the valueOf method.

Property
Summary

Method Summary

Core object

Implemented in Navigator 3.0, LiveWire 1.0

value The initial value of the Boolean object. The value is converted to a
boolean value, if necessary. If value is omitted or is 0, null, false, or the
empty string (""), the object has an initial value of false. All other values,
including the string "false" , create an object with an initial value of true.

Property Description

prototype Defines a property that is shared by all Boolean objects.

Method Description

toString Returns a string representing the specified object.
Chapter 4, Core 111

Boolean
Examples The following examples create Boolean objects with an initial value of false:

bNoParam = new Boolean()
bZero = new Boolean(0)
bNull = new Boolean(null)
bEmptyString = new Boolean("")
bfalse = new Boolean(false)

The following examples create Boolean objects with an initial value of true:

btrue = new Boolean(true)
btrueString = new Boolean("true")
bfalseString = new Boolean("false")
bSuLin = new Boolean("Su Lin")

Properties

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

Methods

toString

Returns a string representing the specified object.

Syntax toString()

Parameters None.

Property of Boolean

Implemented in Navigator 3.0, LiveWire 1.0

Method of Boolean

Implemented in Navigator 3.0, LiveWire 1.0
112 JavaScript Reference

Date
Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use toString within your own code to convert an object into a string,
and you can create your own function to be called in place of the default
toString method.

For Boolean objects and values, the built-in toString method returns "true"
or "false" depending on the value of the boolean object. In the following
code, flag.toString returns "true" .

flag = new Boolean(true)
document.write("flag.toString() is " + flag.toString() + "
")

For information on defining your own toString method, see the
Object.toString method.

Date
Lets you work with dates and times.

Created by The Date constructor:

new Date()
new Date("month day, year hours:minutes:seconds")
new Date(yr_num, mo_num, day_num)
new Date(yr_num, mo_num, day_num, hr_num, min_num, sec_num)

Parameters

Core object

Implemented in Navigator 2.0, LiveWire 1.0
Navigator 3.0: added prototype property

month, day, year,
hours, minutes,
seconds

String values representing part of a date.

yr_num, mo_num,
day_num, hr_num,
min_num, sec_num

Integer values representing part of a date. As an integer value,
the month is represented by 0 to 11 with 0=January and
11=December.
Chapter 4, Core 113

Date
Description If you supply no arguments, the constructor creates a Date object for today’s
date and time. If you supply some arguments, but not others, the missing
arguments are set to 0. If you supply any arguments, you must supply at least
the year, month, and day. You can omit the hours, minutes, and seconds.

The way JavaScript handles dates is very similar to the way Java handles dates:
both languages have many of the same date methods, and both store dates
internally as the number of milliseconds since January 1, 1970 00:00:00. Dates
prior to 1970 are not allowed.

Property
Summary

Method Summary

Property Description

prototype Allows the addition of properties to a Date object.

Method Description

getDate Returns the day of the month for the specified date.

getDay Returns the day of the week for the specified date.

getHours Returns the hour in the specified date.

getMinutes Returns the minutes in the specified date.

getMonth Returns the month in the specified date.

getSeconds Returns the seconds in the specified date.

getTime Returns the numeric value corresponding to the time for
the specified date.

getTimezoneOffse
t

Returns the time-zone offset in minutes for the current
locale.

getYear Returns the year in the specified date.

parse Returns the number of milliseconds in a date string since
January 1, 1970, 00:00:00, local time.

setDate Sets the day of the month for a specified date.

setHours Sets the hours for a specified date.

setMinutes Sets the minutes for a specified date.

setMonth Sets the month for a specified date.
114 JavaScript Reference

Date
Examples The following examples show several ways to assign dates:

today = new Date()
birthday = new Date("December 17, 1995 03:24:00")
birthday = new Date(95,11,17)
birthday = new Date(95,11,17,3,24,0)

Properties

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

setSeconds Sets the seconds for a specified date.

setTime Sets the value of a Date object.

setYear Sets the year for a specified date.

toGMTString Converts a date to a string, using the Internet GMT
conventions.

toLocaleString Converts a date to a string, using the current locale’s
conventions.

UTC Returns the number of milliseconds in a Date object since
January 1, 1970, 00:00:00, Universal Coordinated Time
(GMT).

Method Description

Property of Date

Implemented in Navigator 3.0, LiveWire 1.0
Chapter 4, Core 115

Date
Methods

getDate

Returns the day of the month for the specified date.

Syntax getDate()

Parameters None

Description The value returned by getDate is an integer between 1 and 31.

Examples The second statement below assigns the value 25 to the variable day , based on
the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
day = Xmas95.getDate()

See also Date.setDate

getDay

Returns the day of the week for the specified date.

Syntax getDay()

Parameters None

Description The value returned by getDay is an integer corresponding to the day of the
week: 0 for Sunday, 1 for Monday, 2 for Tuesday, and so on.

Examples The second statement below assigns the value 1 to weekday , based on the
value of the Date object Xmas95. December 25, 1995, is a Monday.

Xmas95 = new Date("December 25, 1995 23:15:00")
weekday = Xmas95.getDay()

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0
116 JavaScript Reference

Date
getHours

Returns the hour for the specified date.

Syntax getHours()

Parameters None

Description The value returned by getHours is an integer between 0 and 23.

Examples The second statement below assigns the value 23 to the variable hours , based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
hours = Xmas95.getHours()

See also Date.setHours

getMinutes

Returns the minutes in the specified date.

Syntax getMinutes()

Parameters None

Description The value returned by getMinutes is an integer between 0 and 59.

Examples The second statement below assigns the value 15 to the variable minutes ,
based on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
minutes = Xmas95.getMinutes()

See also Date.setMinutes

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0
Chapter 4, Core 117

Date
getMonth

Returns the month in the specified date.

Syntax getMonth()

Parameters None

Description The value returned by getMonth is an integer between 0 and 11. 0 corresponds
to January, 1 to February, and so on.

Examples The second statement below assigns the value 11 to the variable month , based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:00")
month = Xmas95.getMonth()

See also Date.setMonth

getSeconds

Returns the seconds in the current time.

Syntax getSeconds()

Parameters None

Description The value returned by getSeconds is an integer between 0 and 59.

Examples The second statement below assigns the value 30 to the variable secs , based
on the value of the Date object Xmas95.

Xmas95 = new Date("December 25, 1995 23:15:30")
secs = Xmas95.getSeconds()

See also Date.setSeconds

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0
118 JavaScript Reference

Date
getTime

Returns the numeric value corresponding to the time for the specified date.

Syntax getTime()

Parameters None

Description The value returned by the getTime method is the number of milliseconds since
1 January 1970 00:00:00. You can use this method to help assign a date and
time to another Date object.

Examples The following example assigns the date value of theBigDay to sameAsBigDay :

theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

See also Date.setTime

getTimezoneOffset

Returns the time-zone offset in minutes for the current locale.

Syntax getTimezoneOffset()

Parameters None

Description The time-zone offset is the difference between local time and Greenwich Mean
Time (GMT). Daylight savings time prevents this value from being a constant.

Examples x = new Date()
currentTimeZoneOffsetInHours = x.getTimezoneOffset()/60

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0
Chapter 4, Core 119

Date
getYear

Returns the year in the specified date.

Syntax getYear()

Parameters None

Description The getYear method returns either a 2-digit or 4-digit year:

• For years between and including 1900 and 1999, the value returned by
getYear is the year minus 1900. For example, if the year is 1976, the value
returned is 76.

• For years less than 1900 or greater than 1999, the value returned by
getYear is the four-digit year. For example, if the year is 1856, the value
returned is 1856. If the year is 2026, the value returned is 2026.

Examples Example 1. The second statement assigns the value 95 to the variable year .

Xmas = new Date("December 25, 1995 23:15:00")
year = Xmas.getYear()

Example 2. The second statement assigns the value 2000 to the variable year .

Xmas = new Date("December 25, 2000 23:15:00")
year = Xmas.getYear()

Example 3. The second statement assigns the value 95 to the variable year ,
representing the year 1995.

Xmas.setYear(95)
year = Xmas.getYear()

See also Date.setYear

parse

Returns the number of milliseconds in a date string since January 1, 1970,
00:00:00, local time.

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0

Method of Date
120 JavaScript Reference

Date
Syntax Date.parse(dateString)

Parameters :

Description The parse method takes a date string (such as "Dec 25, 1995") and returns
the number of milliseconds since January 1, 1970, 00:00:00 (local time). This
function is useful for setting date values based on string values, for example in
conjunction with the setTime method and the Date object.

Given a string representing a time, parse returns the time value. It accepts the
IETF standard date syntax: "Mon, 25 Dec 1995 13:30:00 GMT" . It
understands the continental US time-zone abbreviations, but for general use,
use a time-zone offset, for example, "Mon, 25 Dec 1995 13:30:00

GMT+0430" (4 hours, 30 minutes west of the Greenwich meridian). If you do
not specify a time zone, the local time zone is assumed. GMT and UTC are
considered equivalent.

Because parse is a static method of Date , you always use it as Date.parse() ,
rather than as a method of a Date object you created.

Examples If IPOdate is an existing Date object, then you can set it to August 9, 1995 as
follows:

IPOdate.setTime(Date.parse("Aug 9, 1995"))

See also Date.UTC

setDate

Sets the day of the month for a specified date.

Syntax setDate(dayValue)

Static

Implemented in Navigator 2.0, LiveWire 1.0

dateString A string representing a date.

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0
Chapter 4, Core 121

Date
Parameters

Examples The second statement below changes the day for theBigDay to July 24 from its
original value.

theBigDay = new Date("July 27, 1962 23:30:00")
theBigDay.setDate(24)

See also Date.getDate

setHours

Sets the hours for a specified date.

Syntax setHours(hoursValue)

Parameters

Examples theBigDay.setHours(7)

See also Date.getHours

setMinutes

Sets the minutes for a specified date.

Syntax setMinutes(minutesValue)

Parameters

dayValue An integer from 1 to 31, representing the day of the month.

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0

hoursValue An integer between 0 and 23, representing the hour.

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0

minutesValue An integer between 0 and 59, representing the minutes.
122 JavaScript Reference

Date
Examples theBigDay.setMinutes(45)

See also Date.getMinutes

setMonth

Sets the month for a specified date.

Syntax setMonth(monthValue)

Parameters

Examples theBigDay.setMonth(6)

See also Date.getMonth

setSeconds

Sets the seconds for a specified date.

Syntax setSeconds(secondsValue)

Parameters

Examples theBigDay.setSeconds(30)

See also Date.getSeconds

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0

monthValue An integer between 0 and 11 (representing the months January
through December).

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0

secondsValue An integer between 0 and 59.
Chapter 4, Core 123

Date
setTime

Sets the value of a Date object.

Syntax setTime(timevalue)

Parameters

Description Use the setTime method to help assign a date and time to another Date object.

Examples theBigDay = new Date("July 1, 1999")
sameAsBigDay = new Date()
sameAsBigDay.setTime(theBigDay.getTime())

See also Date.getTime

setYear

Sets the year for a specified date.

Syntax setYear(yearValue)

Parameters

Description If yearValue is a number between 0 and 99 (inclusive), then the year for
dateObjectName is set to 1900 + yearValue . Otherwise, the year for
dateObjectName is set to yearValue .

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0

timevalue An integer representing the number of milliseconds since 1 January
1970 00:00:00.

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0

yearValue An integer.
124 JavaScript Reference

Date
Examples Note that there are two ways to set years in the 20th century.

Example 1. The year is set to 1996.

theBigDay.setYear(96)

Example 2. The year is set to 1996.

theBigDay.setYear(1996)

Example 3. The year is set to 2000.

theBigDay.setYear(2000)

See also Date.getYear

toGMTString

Converts a date to a string, using the Internet GMT conventions.

Syntax toGMTString()

Parameters None

Description The exact format of the value returned by toGMTString varies according to the
platform.

Examples In the following example, today is a Date object:

today.toGMTString()

In this example, the toGMTString method converts the date to GMT (UTC)
using the operating system’s time-zone offset and returns a string value that is
similar to the following form. The exact format depends on the platform.

Mon, 18 Dec 1995 17:28:35 GMT

See also Date.toLocaleString

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0
Chapter 4, Core 125

Date
toLocaleString

Converts a date to a string, using the current locale’s conventions.

Syntax toLocaleString()

Parameters None

Description If you pass a date using toLocaleString , be aware that different platforms
assemble the string in different ways. Using methods such as getHours ,
getMinutes , and getSeconds gives more portable results.

Examples In the following example, today is a Date object:

today = new Date(95,11,18,17,28,35) //months are represented by 0 to 11
today.toLocaleString()

In this example, toLocaleString returns a string value that is similar to the
following form. The exact format depends on the platform.

12/18/95 17:28:35

See also Date.toGMTString

UTC

Returns the number of milliseconds in a Date object since January 1, 1970,
00:00:00, Universal Coordinated Time (GMT).

Syntax Date.UTC(year, month, day, hrs, min, sec)

Parameters

Method of Date

Implemented in Navigator 2.0, LiveWire 1.0

Method of Date

Static

Implemented in Navigator 2.0, LiveWire 1.0

year A year after 1900.

month A month between 0 and 11.

date A day of the month between 1 and 31.
126 JavaScript Reference

Function
Description UTC takes comma-delimited date parameters and returns the number of
milliseconds since January 1, 1970, 00:00:00, Universal Coordinated Time
(GMT).

Because UTC is a static method of Date , you always use it as Date.UTC() ,
rather than as a method of a Date object you created.

Examples The following statement creates a Date object using GMT instead of local time:

gmtDate = new Date(Date.UTC(96, 11, 1, 0, 0, 0))

See also Date.parse

Function
Specifies a string of JavaScript code to be compiled as a function.

Created by The Function constructor:

new Function (arg1, arg2, ... arg N, functionBody)

Parameters

Description Function objects are evaluated each time they are used. This is less efficient
than declaring a function and calling it within your code, because declared
functions are compiled.

hrs (Optional) A number of hours between 0 and 23.

min (Optional) A number of minutes between 0 and 59.

sec (Optional) A number of seconds between 0 and 59.

Core object

Implemented in Navigator 3.0, LiveWire 1.0
Navigator 4.0: added arity property.

arg1, arg2,
... arg N

(Optional) Names to be used by the function as formal argument
names. Each must be a string that corresponds to a valid JavaScript
identifier; for example "x" or "theForm" .

functionBody A string containing the JavaScript statements comprising the function
definition.
Chapter 4, Core 127

Function
In addition to defining functions as described here, you can also use the
function statement, as described in the JavaScript Guide.

Property
Summary

Method Summary

Specifying a variable value with a Function object

The following code assigns a function to the variable setBGColor . This
function sets the current document’s background color.

var setBGColor = new Function("document.bgColor='antiquewhite'")

To call the Function object, you can specify the variable name as if it were a
function. The following code executes the function specified by the
setBGColor variable:

var colorChoice="antiquewhite"
if (colorChoice=="antiquewhite") {setBGColor()}

You can assign the function to an event handler in either of the following ways:

document.form1.colorButton.onclick=setBGColor

<INPUT NAME="colorButton" TYPE="button"
VALUE="Change background color"
onClick="setBGColor()">

Creating the variable setBGColor shown above is similar to declaring the
following function:

Property Description

arguments An array corresponding to the arguments passed to a function.

arity Indicates the number of arguments expected by the function.

caller Specifies which function called the current function.

prototype Allows the addition of properties to a Function object.

Method Description

toString Returns a string representing the specified object.
128 JavaScript Reference

Function
function setBGColor() {
document.bgColor='antiquewhite'

}

Assigning a function to a variable is similar to declaring a function, but they
have differences:

• When you assign a function to a variable using var setBGColor = new

Function("...") , setBGColor is a variable for which the current value is
a reference to the function created with new Function() .

• When you create a function using function setBGColor() {...} ,
setBGColor is not a variable, it is the name of a function.

Specifying arguments in a Function object

The following code specifies a Function object that takes two arguments.

var multFun = new Function("x", "y", "return x * y")

The string arguments "x" and "y" are formal argument names that are used in
the function body, "return x * y" .

The following code shows several ways to call the function multFun :

var theAnswer = multFun(7,6)

document.write("15*2 = " + multFun(15,2))

<INPUT NAME="operand1" TYPE="text" VALUE="5" SIZE=5>
<INPUT NAME="operand2" TYPE="text" VALUE="6" SIZE=5>
<INPUT NAME="result" TYPE="text" VALUE="" SIZE=10>
<INPUT NAME="buttonM" TYPE="button" VALUE="Multiply"

onClick="document.form1.result.value=
multFun(document.form1.operand1.value,

document.form1.operand2.value)">

You cannot call the function multFun in an object’s event handler property,
because event handler properties cannot take arguments. For example, you
cannot call the function multFun by setting a button’s onclick property as
follows:

document.form1.button1.onclick=multFun(5,10)
Chapter 4, Core 129

Function
Specifying an event handler with a Function object

The following code assigns a function to a window’s onFocus event handler
(the event handler must be spelled in all lowercase):

window.onfocus = new Function("document.bgColor='antiquewhite'")

Once you have a reference to a function object, you can use it like a function
and it will convert from an object to a function:

window.onfocus()

Event handlers do not take arguments, so you cannot declare any arguments in
the Function constructor for an event handler.

Examples Example 1. The following example creates onFocus and onBlur event
handlers for a frame. This code exists in the same file that contains the
FRAMESET tag. Note that this is the only way to create onFocus and onBlur
event handlers for a frame, because you cannot specify the event handlers in
the FRAME tag.

frames[0].onfocus = new Function("document.bgColor='antiquewhite'")
frames[0].onblur = new Function("document.bgColor='lightgrey'")

Example 2. You can determine whether a function exists by comparing the
function name to null. In the following example, func1 is called if the function
noFunc does not exist; otherwise func2 is called. Notice that the window name
is needed when referring to the function name noFunc .

if (window.noFunc == null)
func1()

else func2()

Properties

arguments

An array corresponding to the arguments passed to a function.

Property of Function

Implemented in Navigator 3.0, LiveWire 1.0
Navigator 4.0
130 JavaScript Reference

Function
Description You can call a function with more arguments than it is formally declared to
accept by using the arguments array. This technique is useful if a function can
be passed a variable number of arguments. You can use arguments.length to
determine the number of arguments passed to the function, and then treat each
argument by using the arguments array.

The arguments array is available only within a function declaration. Attempting
to access the arguments array outside a function declaration results in an error.

The this keyword does not refer to the currently executing function, so you
must refer to functions and Function objects by name, even within the
function body. In JavaScript 1.2, arguments includes these additional
properties:

• formal arguments—each formal argument of a function is a property of the
arguments array.

• local variables—each local variable of a function is a property of the
arguments array.

• caller —a property whose value is the arguments array of the outer
function. If there is no outer function, the value is undefined.

• callee —a property whose value is the function reference.

For example, the following script demonstrates several of the arguments
properties:

<SCRIPT>

function b(z) {
document.write(arguments.z + "
")
document.write (arguments.caller.x + "
")
return 99

}

function a(x, y) {
return b(534)

}

document.write (a(2,3) + "
")

</SCRIPT>

This displays:
Chapter 4, Core 131

Function
534
2
99

534 is the actual parameter to b, so it is the value of arguments.z .

2 is a's actual x parameter, so (viewed within b) it is the value of
arguments.caller.x .

99 is what a(2,3) returns.

Examples This example defines a function that creates HTML lists. The only formal
argument for the function is a string that is "U" if the list is to be unordered
(bulleted), or "O" if the list is to be ordered (numbered). The function is
defined as follows:

function list(type) {
document.write("<" + type + "L>")
for (var i=1; i<list.arguments.length; i++) {

document.write("" + list.arguments[i])
document.write("</" + type + "L>")

}
}

You can pass any number of arguments to this function, and it displays each
argument as an item in the type of list indicated. For example, the following
call to the function

list("U", "One", "Two", "Three")

results in this output:

One
Two
Three

In server-side JavaScript, you can display the same output by calling the write
function instead of using document.write .

arity

When the LANGUAGE attribute of the SCRIPT tag is "JavaScript1.2", this property
indicates the number of arguments expected by a function.

Property of Function
132 JavaScript Reference

Function
Description arity is external to the function, and indicates how many arguments the
function expects. By contrast, arguments.length provides the number of
arguments actually passed to the function.

Example The following example demonstrates the use of arity and
arguments.length .

<SCRIPT LANGUAGE = "JavaScript1.2">
function addNumbers(x,y){

document.write("length = " + arguments.length + "
")
z = x + y

}
document.write("arity = " + addNumbers.arity + "
")
addNumbers(3,4,5)
</SCRIPT>

This script writes:

arity = 2
length = 3

caller

Returns the name of the function that invoked the currently executing function.

Description The caller property is available only within the body of a function. If used
outside a function declaration, the caller property is null.

If the currently executing function was invoked by the top level of a JavaScript
program, the value of caller is null.

The this keyword does not refer to the currently executing function, so you
must refer to functions and Function objects by name, even within the
function body.

Implemented in Navigator 4.0, Netscape Server 3.0

Property of Function

Implemented in Navigator 3.0, LiveWire 1.0
Chapter 4, Core 133

Function
The caller property is a reference to the calling function, so

• If you use it in a string context, you get the result of calling
functionName.toString . That is, the decompiled canonical source form
of the function.

• You can also call the calling function, if you know what arguments it might
want. Thus, a called function can call its caller without knowing the name
of the particular caller, provided it knows that all of its callers have the same
form and fit, and that they will not call the called function again
unconditionally (which would result in infinite recursion).

Examples The following code checks the value of a function’s caller property.

function myFunc() {
if (myFunc.caller == null) {

alert("The function was called from the top!")
} else alert("This function's caller was " + myFunc.caller)

}

See also Function.arguments

prototype

A value from which instances of a particular class are created. Every object that
can be created by calling a constructor function has an associated prototype
property.

Description You can add new properties or methods to an existing class by adding them to
the prototype associated with the constructor function for that class. The syntax
for adding a new property or method is:

fun .prototype. name = value

where

Property of Object

Implemented in Navigator 3.0, LiveWire 1.0

fun The name of the constructor function object you want to change.

name The name of the property or method to be created.

value The value initially assigned to the new property or method.
134 JavaScript Reference

Function
If you add a new property to the prototype for an object, then all objects
created with that object’s constructor function will have that new property,
even if the objects existed before you created the new property. For example,
assume you have the following statements:

var array1 = new Array();
var array2 = new Array(3);
Array.prototype.description=null;
array1.description="Contains some stuff"
array2.description="Contains other stuff"

After you set a property for the prototype, all subsequent objects created with
Array will have the property:

anotherArray=new Array()
anotherArray.description="Currently empty"

Example The following example creates a method, str_rep , and uses the statement
String.prototype.rep = str_rep to add the method to all String objects.
All objects created with new String() then have that method, even objects
already created. The example then creates an alternate method and adds that to
one of the String objects using the statement s1.rep = fake_rep . The
str_rep method of the remaining String objects is not altered.

var s1 = new String("a")
var s2 = new String("b")
var s3 = new String("c")

// Create a repeat-string-N-times method for all String objects
function str_rep(n) {
 var s = "", t = this.toString()
 while (--n >= 0) s += t
 return s
}
String.prototype.rep = str_rep

// Display the results
document.write("<P>s1.rep(3) is " + s1.rep(3)) // "aaa"
document.write("
s2.rep(5) is " + s2.rep(5)) // "bbbbb"
document.write("
s3.rep(2) is " + s3.rep(2)) // "cc"

// Create an alternate method and assign it to only one String variable
function fake_rep(n) {
 return "repeat " + this + n + " times."
}

s1.rep = fake_rep

document.write("<P>s1.rep(1) is " + s1.rep(1)) // "repeat a 1 times."
document.write("
s2.rep(4) is " + s2.rep(4)) // "bbbb"
document.write("
s3.rep(6) is " + s3.rep(6)) // "cccccc"
Chapter 4, Core 135

Function
This example produces the following output:

s1.rep(3) is aaa
s2.rep(5) is bbbbb
s3.rep(2) is cc

s1.rep(1) is repeat a1 times.
s2.rep(4) is bbbb
s3.rep(6) is cccccc

The function in this example also works on String objects not created with the
String constructor. The following code returns "zzz" .

"z".rep(3)

Methods

toString

Returns a string representing the specified object.

Syntax toString()

Parameters None.

Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use toString within your own code to convert an object into a string,
and you can create your own function to be called in place of the default
toString method.

For Function objects, the built-in toString method decompiles the function
back into the JavaScript source that defines the function. This string includes
the function keyword, the argument list, curly braces, and function body.

For example, assume you have the following code that defines the Dog object
type and creates theDog, an object of type Dog:

Method of Function

Implemented in Navigator 3.0, LiveWire 1.0
136 JavaScript Reference

Math
function Dog(name,breed,color,sex) {
this.name=name
this.breed=breed
this.color=color
this.sex=sex

}

theDog = new Dog("Gabby","Lab","chocolate","girl")

Any time Dog is used in a string context, JavaScript automatically calls the
toString function, which returns the following string:

function Dog(name, breed, color, sex) { this.name = name; this.breed =
breed; this.color = color; this.sex = sex; }

For information on defining your own toString method, see the
Object.toString method.

Math
A built-in object that has properties and methods for mathematical constants
and functions. For example, the Math object’s PI property has the value of pi.

Created by The Math object is a top-level, predefined JavaScript object. You can
automatically access it without using a constructor or calling a method.

Description All properties and methods of Math are static. You refer to the constant PI as
Math.PI and you call the sine function as Math.sin(x) , where x is the
method’s argument. Constants are defined with the full precision of real
numbers in JavaScript.

It is often convenient to use the with statement when a section of code uses
several Math constants and methods, so you don’t have to type “Math”
repeatedly. For example,

with (Math) {
a = PI * r*r
y = r*sin(theta)
x = r*cos(theta)

}

Core object.

Implemented in Navigator 2.0, LiveWire 1.0
Chapter 4, Core 137

Math
Property
Summary

Method Summary

Property Description

E Euler’s constant and the base of natural logarithms, approximately
2.718.

LN10 Natural logarithm of 10, approximately 2.302.

LN2 Natural logarithm of 2, approximately 0.693.

LOG10E Base 10 logarithm of E (approximately 0.434).

LOG2E Base 2 logarithm of E (approximately 1.442).

PI Ratio of the circumference of a circle to its diameter, approximately
3.14159.

SQRT1_2 Square root of 1/2; equivalently, 1 over the square root of 2,
approximately 0.707.

SQRT2 Square root of 2, approximately 1.414.

Method Description

abs Returns the absolute value of a number.

acos Returns the arccosine (in radians) of a number.

asin Returns the arcsine (in radians) of a number.

atan Returns the arctangent (in radians) of a number.

atan2 Returns the arctangent of the quotient of its arguments.

ceil Returns the smallest integer greater than or equal to a number.

cos Returns the cosine of a number.

exp Returns Enumber, where number is the argument, and E is Euler’s
constant, the base of the natural logarithms.

floor Returns the largest integer less than or equal to a number.

log Returns the natural logarithm (base E) of a number.

max Returns the greater of two numbers.

min Returns the lesser of two numbers.

pow Returns base to the exponent power, that is, base exponent .
138 JavaScript Reference

Math
Properties

E

Euler’s constant and the base of natural logarithms, approximately 2.718.

Examples The following function returns Euler’s constant:

function getEuler() {
return Math.E

}

Description Because E is a static property of Math , you always use it as Math.E , rather than
as a property of a Math object you created.

LN10

The natural logarithm of 10, approximately 2.302.

Examples The following function returns the natural log of 10:

random Returns a pseudo-random number between 0 and 1.

round Returns the value of a number rounded to the nearest integer.

sin Returns the sine of a number.

sqrt Returns the square root of a number.

tan Returns the tangent of a number.

Property of Math

Static, Read-only

Implemented in Navigator 2.0, LiveWire 1.0

Method Description

Property of Math

Static, Read-only

Implemented in Navigator 2.0, LiveWire 1.0
Chapter 4, Core 139

Math
function getNatLog10() {
return Math.LN10

}

Description Because LN10 is a static property of Math , you always use it as Math.LN10 ,
rather than as a property of a Math object you created.

LN2

The natural logarithm of 2, approximately 0.693.

Examples The following function returns the natural log of 2:

function getNatLog2() {
return Math.LN2

}

Description Because LN2 is a static property of Math , you always use it as Math.LN2 , rather
than as a property of a Math object you created.

LOG10E

The base 10 logarithm of E (approximately 0.434).

Examples The following function returns the base 10 logarithm of E:

function getLog10e() {
return Math.LOG10E

}

Description Because LOG10E is a static property of Math , you always use it as
Math.LOG10E , rather than as a property of a Math object you created.

Property of Math

Static, Read-only

Implemented in Navigator 2.0, LiveWire 1.0

Property of Math

Static, Read-only

Implemented in Navigator 2.0, LiveWire 1.0
140 JavaScript Reference

Math
LOG2E

The base 2 logarithm of E (approximately 1.442).

Examples The following function returns the base 2 logarithm of E:

function getLog2e() {
return Math.LOG2E

}

Description Because LOG2E is a static property of Math , you always use it as Math.LOG2E ,
rather than as a property of a Math object you created.

PI

The ratio of the circumference of a circle to its diameter, approximately
3.14159.

Examples The following function returns the value of pi:

function getPi() {
return Math.PI

}

Description Because PI is a static property of Math , you always use it as Math.PI , rather
than as a property of a Math object you created.

SQRT1_2

The square root of 1/2; equivalently, 1 over the square root of 2, approximately
0.707.

Property of Math

Static, Read-only

Implemented in Navigator 2.0, LiveWire 1.0

Property of Math

Static, Read-only

Implemented in Navigator 2.0, LiveWire 1.0

Property of Math

Static, Read-only
Chapter 4, Core 141

Math
Examples The following function returns 1 over the square root of 2:

function getRoot1_2() {
return Math.SQRT1_2

}

Description Because SQRT1_2 is a static property of Math , you always use it as
Math.SQRT1_2 , rather than as a property of a Math object you created.

SQRT2

The square root of 2, approximately 1.414.

Examples The following function returns the square root of 2:

function getRoot2() {
return Math.SQRT2

}

Description Because SQRT2 is a static property of Math , you always use it as Math.SQRT2 ,
rather than as a property of a Math object you created.

Methods

abs

Returns the absolute value of a number.

Syntax abs(x)

Implemented in Navigator 2.0, LiveWire 1.0

Property of Math

Static, Read-only

Implemented in Navigator 2.0, LiveWire 1.0

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0
142 JavaScript Reference

Math
Parameters

Examples The following function returns the absolute value of the variable x :

function getAbs(x) {
return Math.abs(x)

}

Description Because abs is a static method of Math , you always use it as Math.abs() ,
rather than as a method of a Math object you created.

acos

Returns the arccosine (in radians) of a number.

Syntax acos(x)

Parameters

Description The acos method returns a numeric value between 0 and pi radians. If the
value of number is outside this range, it returns 0.

Because acos is a static method of Math , you always use it as Math.acos() ,
rather than as a method of a Math object you created.

Examples The following function returns the arccosine of the variable x :

function getAcos(x) {
return Math.acos(x)

}

If you pass -1 to getAcos , it returns 3.141592653589793; if you pass 2, it returns
0 because 2 is out of range.

See also Math.asin , Math.atan , Math.atan2 , Math.cos , Math.sin , Math.tan

x A number

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0

x A number
Chapter 4, Core 143

Math
asin

Returns the arcsine (in radians) of a number.

Syntax asin(x)

Parameters

Description The asin method returns a numeric value between -pi/2 and pi/2 radians. If
the value of number is outside this range, it returns 0.

Because asin is a static method of Math , you always use it as Math.asin() ,
rather than as a method of a Math object you created.

Examples The following function returns the arcsine of the variable x :

function getAsin(x) {
return Math.asin(x)

}

If you pass getAsin the value 1, it returns 1.570796326794897 (pi/2); if you
pass it the value 2, it returns 0 because 2 is out of range.

See also Math.acos , Math.atan , Math.atan2 , Math.cos , Math.sin , Math.tan

atan

Returns the arctangent (in radians) of a number.

Syntax atan(x)

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0

x A number

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0
144 JavaScript Reference

Math
Parameters

Description The atan method returns a numeric value between -pi/2 and pi/2 radians.

Because atan is a static method of Math , you always use it as Math.atan() ,
rather than as a method of a Math object you created.

Examples The following function returns the arctangent of the variable x :

function getAtan(x) {
return Math.atan(x)

}

If you pass getAtan the value 1, it returns 0.7853981633974483; if you pass it
the value .5, it returns 0.4636476090008061.

See also Math.acos , Math.asin , Math.atan2 , Math.cos , Math.sin , Math.tan

atan2

Returns the arctangent of the quotient of its arguments.

Syntax atan2(y, x)

Parameters

Description The atan2 method returns a numeric value between -pi and pi representing the
angle theta of an (x,y) point. This is the counterclockwise angle, measured in
radians, between the positive X axis, and the point (x,y). Note that the
arguments to this function pass the y-coordinate first and the x-coordinate
second.

atan2 is passed separate x and y arguments, and atan is passed the ratio of
those two arguments.

x A number

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0

y, x Number
Chapter 4, Core 145

Math
Because atan2 is a static method of Math , you always use it as Math.atan2() ,
rather than as a method of a Math object you created.

Examples The following function returns the angle of the polar coordinate:

function getAtan2(x,y) {
return Math.atan2(x,y)

}

If you pass getAtan2 the values (90,15), it returns 1.4056476493802699; if you
pass it the values (15,90), it returns 0.16514867741462683.

See also Math.acos , Math.asin , Math.atan , Math.cos , Math.sin , Math.tan

ceil

Returns the smallest integer greater than or equal to a number.

Syntax ceil(x)

Parameters

Description Because ceil is a static method of Math , you always use it as Math.ceil() ,
rather than as a method of a Math object you created.

Examples The following function returns the ceil value of the variable x :

function getCeil(x) {
return Math.ceil(x)

}

If you pass 45.95 to getCeil , it returns 46; if you pass -45.95, it returns -45.

See also Math.floor

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0

x A number
146 JavaScript Reference

Math
cos

Returns the cosine of a number.

Syntax cos(x)

Parameters

Description The cos method returns a numeric value between -1 and 1, which represents
the cosine of the angle.

Because cos is a static method of Math , you always use it as Math.cos() ,
rather than as a method of a Math object you created.

Examples The following function returns the cosine of the variable x :

function getCos(x) {
return Math.cos(x)

}

If x equals Math.PI/2 , getCos returns 6.123031769111886e-017; if x equals
Math.PI , getCos returns -1.

See also Math.acos , Math.asin , Math.atan , Math.atan2 , Math.sin , Math.tan

exp

Returns Ex, where x is the argument, and E is Euler’s constant, the base of the
natural logarithms.

Syntax exp(x)

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0

x A number

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0
Chapter 4, Core 147

Math
Parameters

Description Because exp is a static method of Math , you always use it as Math.exp() ,
rather than as a method of a Math object you created.

Examples The following function returns the exponential value of the variable x :

function getExp(x) {
return Math.exp(x)

}

If you pass getExp the value 1, it returns 2.718281828459045.

See also Math.E , Math.log , Math.pow

floor

Returns the largest integer less than or equal to a number.

Syntax floor(x)

Parameters

Description Because floor is a static method of Math , you always use it as Math.floor() ,
rather than as a method of a Math object you created.

Examples The following function returns the floor value of the variable x :

function getFloor(x) {
return Math.floor(x)

}

If you pass 45.95 to getFloor , it returns 45; if you pass -45.95, it returns -46.

See also Math.ceil

x A number

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0

x A number
148 JavaScript Reference

Math
log

Returns the natural logarithm (base E) of a number.

Syntax log(x)

Parameters

Description If the value of number is outside the suggested range, the return value is always
-1.797693134862316e+308.

Because log is a static method of Math , you always use it as Math.log() ,
rather than as a method of a Math object you created.

Examples The following function returns the natural log of the variable x :

function getLog(x) {
return Math.log(x)

}

If you pass getLog the value 10, it returns 2.302585092994046; if you pass it the
value 0, it returns -1.797693134862316e+308 because 0 is out of range.

See also Math.exp , Math.pow

max

Returns the larger of two numbers.

Syntax max(x,y)

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0

x A number

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0
Chapter 4, Core 149

Math
Parameters

Description Because max is a static method of Math , you always use it as Math.max() ,
rather than as a method of a Math object you created.

Examples The following function evaluates the variables x and y :

function getMax(x,y) {
return Math.max(x,y)

}

If you pass getMax the values 10 and 20, it returns 20; if you pass it the values
-10 and -20, it returns -10.

See also Math.min

min

Returns the smaller of two numbers.

Syntax min(x,y)

Parameters

Description Because min is a static method of Math , you always use it as Math.min() ,
rather than as a method of a Math object you created.

Examples The following function evaluates the variables x and y :

function getMin(x,y) {
return Math.min(x,y)

}

If you pass getMin the values 10 and 20, it returns 10; if you pass it the values
-10 and -20, it returns -20.

See also Math.max

x, y Numbers.

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0

x, y Numbers.
150 JavaScript Reference

Math
pow

Returns base to the exponent power, that is, base exponent.

Syntax pow(x,y)

Parameters

Description Because pow is a static method of Math , you always use it as Math.pow() ,
rather than as a method of a Math object you created.

Examples function raisePower(x,y) {
return Math.pow(x,y)

}

If x is 7 and y is 2, raisePower returns 49 (7 to the power of 2).

See also Math.exp , Math.log

random

Returns a pseudo-random number between 0 and 1. The random number
generator is seeded from the current time, as in Java.

Syntax random()

Parameters None.

Description Because random is a static method of Math , you always use it as
Math.random() , rather than as a method of a Math object you created.

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0

base The base number

exponent The exponent to which to raise base

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0: Unix only
Navigator 3.0, LiveWire 1.0: all platforms
Chapter 4, Core 151

Math
Examples //Returns a random number between 0 and 1
function getRandom() {

return Math.random()
}

round

Returns the value of a number rounded to the nearest integer.

Syntax round(x)

Parameters

Description If the fractional portion of number is .5 or greater, the argument is rounded to
the next highest integer. If the fractional portion of number is less than .5, the
argument is rounded to the next lowest integer.

Because round is a static method of Math , you always use it as Math.round() ,
rather than as a method of a Math object you created.

Examples //Displays the value 20
document.write("The rounded value is " + Math.round(20.49))

//Displays the value 21
document.write("<P>The rounded value is " + Math.round(20.5))

//Displays the value -20
document.write("<P>The rounded value is " + Math.round(-20.5))

//Displays the value -21
document.write("<P>The rounded value is " + Math.round(-20.51))

In server-side JavaScript, you can display the same output by calling the write
function instead of using document.write .

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0

x A number
152 JavaScript Reference

Math
sin

Returns the sine of a number.

Syntax sin(x)

Parameters

Description The sin method returns a numeric value between -1 and 1, which represents
the sine of the argument.

Because sin is a static method of Math , you always use it as Math.sin() ,
rather than as a method of a Math object you created.

Examples The following function returns the sine of the variable x :

function getSine(x) {
return Math.sin(x)

}

If you pass getSine the value Math.PI/2 , it returns 1.

See also Math.acos , Math.asin , Math.atan , Math.atan2 , Math.cos , Math.tan

sqrt

Returns the square root of a number.

Syntax sqrt(x)

Parameters

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0

x A number

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0

x A number
Chapter 4, Core 153

Math
Description If the value of number is outside the required range, sqrt returns 0.

Because sqrt is a static method of Math , you always use it as Math.sqrt() ,
rather than as a method of a Math object you created.

Examples The following function returns the square root of the variable x :

function getRoot(x) {
return Math.sqrt(x)

}

If you pass getRoot the value 9, it returns 3; if you pass it the value 2, it returns
1.414213562373095.

tan

Returns the tangent of a number.

Syntax tan(x)

Parameters

Description The tan method returns a numeric value that represents the tangent of the
angle.

Because tan is a static method of Math , you always use it as Math.tan() ,
rather than as a method of a Math object you created.

Examples The following function returns the tangent of the variable x :

function getTan(x) {
return Math.tan(x)

}

If you pass Math.PI/4 to getTan , it returns 0.9999999999999999.

See also Math.acos , Math.asin , Math.atan , Math.atan2 , Math.cos , Math.sin

Method of Math

Static

Implemented in Navigator 2.0, LiveWire 1.0

x A number
154 JavaScript Reference

Number
Number
Lets you work with numeric values. The Number object is an object wrapper for
primitive numeric values.

Created by The Number constructor:

new Number(value);

Parameters

Description The primary uses for the Number object are:

• To access its constant properties, which represent the largest and smallest
representable numbers, positive and negative infinity, and the Not-a-
Number value.

• To create numeric objects that you can add properties to. Most likely, you
will rarely need to create a Number object.

The properties of Number are properties of the class itself, not of individual
Number objects.

Navigator 4.0: Number(x) now produces NaN rather than an error if x is a string
that does not contain a well-formed numeric literal. For example,

x=Number("three");

document.write(x + "
");

prints NaN

Property
Summary

Core object

Implemented in Navigator 3.0, LiveWire 1.0
Navigator 4.0: modified behavior of Number constructor

value The numeric value of the object being created.

Property Description

MAX_VALUE The largest representable number.

MIN_VALUE The smallest representable number.
 , 155

Number
Method Summary

Examples Example 1. The following example uses the Number object’s properties to
assign values to several numeric variables:

biggestNum = Number.MAX_VALUE
smallestNum = Number.MIN_VALUE
infiniteNum = Number.POSITIVE_INFINITY
negInfiniteNum = Number.NEGATIVE_INFINITY
notANum = Number.NaN

Example 2. The following example creates a Number object, myNum, then adds
a description property to all Number objects. Then a value is assigned to the
myNum object’s description property.

myNum = new Number(65)
Number.prototype.description=null
myNum.description="wind speed"

Properties

MAX_VALUE

The maximum numeric value representable in JavaScript.

NaN Special “not a number” value.

NEGATIVE_INFINIT
Y

Special infinite value; returned on overflow.

POSITIVE_INFINIT
Y

Special negative infinite value; returned on
overflow.

prototype Allows the addition of properties to a Number
object.

Property Description

Method Description

toString Returns a string representing the specified object.

Property of Number
156 JavaScript Reference

Number
Description The MAX_VALUE property has a value of approximately 1.79E+308. Values larger
than MAX_VALUE are represented as "Infinity" .

Because MAX_VALUE is a static property of Number, you always use it as
Number.MAX_VALUE, rather than as a property of a Number object you created.

Examples The following code multiplies two numeric values. If the result is less than or
equal to MAX_VALUE, the func1 function is called; otherwise, the func2
function is called.

if (num1 * num2 <= Number.MAX_VALUE)
func1()

else
func2()

MIN_VALUE

The smallest positive numeric value representable in JavaScript.

Description The MIN_VALUE property is the number closest to 0, not the most negative
number, that JavaScript can represent.

MIN_VALUE has a value of approximately 2.22E-308. Values smaller than
MIN_VALUE (“underflow values”) are converted to 0.

Because MIN_VALUE is a static property of Number, you always use it as
Number.MIN_VALUE , rather than as a property of a Number object you created.

Examples The following code divides two numeric values. If the result is greater than or
equal to MIN_VALUE, the func1 function is called; otherwise, the func2
function is called.

if (num1 / num2 >= Number.MIN_VALUE)
func1()

else
func2()

Static, Read-only

Implemented in Navigator 3,0, LiveWire 1.0

Property of Number

Static, Read-only

Implemented in Navigator 3,0, LiveWire 1.0
 , 157

Number
NaN

A special value representing Not-A-Number. This value is represented as the
unquoted literal NaN.

Description JavaScript prints the value Number.NaN as NaN.

NaN is always unequal to any other number, including NaN itself; you cannot
check for the not-a-number value by comparing to Number.NaN . Use the isNaN
function instead.

You might use the NaN property to indicate an error condition for a function
that should return a valid number.

Examples In the following example, if month has a value greater than 12, it is assigned
NaN, and a message is displayed indicating valid values.

var month = 13
if (month < 1 || month > 12) {

month = Number.NaN
alert("Month must be between 1 and 12.")

}

See also isNaN , parseFloat , parseInt

NEGATIVE_INFINITY

A special numeric value representing negative infinity. This value is displayed
as "-Infinity" .

Description This value behaves mathematically like infinity; for example, anything
multiplied by infinity is infinity, and anything divided by infinity is 0.

Property of Number

 Read-only

Implemented in Navigator 3,0, LiveWire 1.0

Property of Number

Static, Read-only

Implemented in Navigator 3,0, LiveWire 1.0
158 JavaScript Reference

Number
Because NEGATIVE_INFINITY is a static property of Number, you always use it
as Number.NEGATIVE_INFINITY , rather than as a property of a Number object
you created.

Examples In the following example, the variable smallNumber is assigned a value that is
smaller than the minimum value. When the if statement executes,
smallNumber has the value "-Infinity" , so the func1 function is called.

var smallNumber = -Number.MAX_VALUE*10
if (smallNumber == Number.NEGATIVE_INFINITY)

func1()
else

func2()

POSITIVE_INFINITY

A special numeric value representing infinity. This value is displayed as
"Infinity" .

Description This value behaves mathematically like infinity; for example, anything
multiplied by infinity is infinity, and anything divided by infinity is 0.

JavaScript does not have a literal for Infinity.

Because POSITIVE_INFINITY is a static property of Number, you always use it
as Number.POSITIVE_INFINITY , rather than as a property of a Number object
you created.

Examples In the following example, the variable bigNumber is assigned a value that is
larger than the maximum value. When the if statement executes, bigNumber
has the value "Infinity" , so the func1 function is called.

var bigNumber = Number.MAX_VALUE * 10
if (bigNumber == Number.POSITIVE_INFINITY)

func1()
else

func2()

Property of Number

Static, Read-only

Implemented in Navigator 3,0, LiveWire 1.0
 , 159

Number
prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

Methods

toString

Returns a string representing the specified object.

Syntax toString()
toString(radix)

Parameters

Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use toString within your own code to convert an object into a string,
and you can create your own function to be called in place of the default
toString method.

You can use toString on numeric values, but not on numeric literals:

// The next two lines are valid
var howMany=10
document.write("howMany.toString() is " + howMany.toString() + "
")

// The next line causes an error
document.write("45.toString() is " + 45.toString() + "
")

Property of Number

Implemented in Navigator 3.0, LiveWire 1.0

Method of Number

Implemented in Navigator 3.0

radix (Optional) An integer between 2 and 16 specifying the base to
use for representing numeric values.
160 JavaScript Reference

Object
For information on defining your own toString method, see the
Object.toString method.

Object
Object is the primitive JavaScript object type. All JavaScript objects are
descended from Object . That is, all JavaScript objects have the methods
defined for Object .

Created by The Object constructor:

new Object();

Parameters None

Property
Summary

Method Summary

Core object

Implemented in Navigator 2.0: toString method
Navigator 3.0, LiveWire 1.0: added eval and
valueOf methods; constructor property
Navigator 3.0: removed eval method

Property Description

constructor Specifies the function that creates an object’s prototype.

prototype Allows the addition of properties to all objects.

Method Description

eval Evaluates a string of JavaScript code in the context of the specified
object.

toString Returns a string representing the specified object.

unwatch Removes a watchpoint from a property of the object.

valueOf Returns the primitive value of the specified object.

watch Adds a watchpoint to a property of the object.
 , 161

Object
Properties

constructor

Specifies the function that creates an object’s prototype. Note that the value of
this property is a reference to the function itself, not a string containing the
function’s name.

Description All objects inherit a constructor property from their prototype :

o = new Object // or o = {} in Navigator 4.0
o.constructor == Object
a = new Array // or a = [] in Navigator 4.0
a.constructor == Array
n = new Number(3)
n.constructor == Number

Even though you cannot construct most HTML objects, you can do
comparisons. For example,

document.constructor == Document
document.form3.constructor == Form

Examples The following example creates a prototype, Tree , and an object of that type,
theTree . The example then displays the constructor property for the object
theTree .

function Tree(name) {
this.name=name

}
theTree = new Tree("Redwood")
document.writeln("theTree.constructor is " +

theTree.constructor + "<P>")

This example displays the following output:

theTree.constructor is function Tree(name) { this.name = name; }

Property of Object

Implemented in Navigator 3.0, LiveWire 1.0
162 JavaScript Reference

Object
prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For more information, see
Function.prototype .

Methods

eval

Evaluates a string of JavaScript code in the context of this object.

Syntax eval(string)

Parameters

Description The argument of the eval method is a string. If the string represents an
expression, eval evaluates the expression. If the argument represents one or
more JavaScript statements, eval performs the statements. Do not call eval to
evaluate an arithmetic expression; JavaScript evaluates arithmetic expressions
automatically.

If you construct an arithmetic expression as a string, you can use eval to
evaluate it at a later time. For example, suppose you have a variable x . You can
postpone evaluation of an expression involving x by assigning the string value
of the expression, say "3 * x + 2" , to a variable, and then calling eval at a
later point in your script.

Property of Object

Implemented in Navigator 3.0

Method of Object

Implemented in Navigator 3.0, LiveWire 1.0
Navigator 4.0, Netscape Server 3.0: removed as method of
objects; retained as global function.

string Any string representing a JavaScript expression, statement, or
sequence of statements. The expression can include variables
and properties of existing objects.
 , 163

Object
eval is also a global function, not associated with any object.

Note In Navigator 2.0, eval was a top-level function. In Navigator 3.0 eval was also
a method of every object. The ECMA-262 standard for JavaScript made eval
available only as a top-level function. For this reason, in Navigator 4.0, eval is
once again a top-level function. In Navigator 4.02, obj.eval(str) is
equivalent in all scopes to with(obj)eval(str) , except of course that the
latter is a statement, not an expression.

Examples Example 1. The following example creates breed as a property of the object
myDog, and also as a variable. The first write statement uses eval('breed')
without specifying an object; the string "breed" is evaluated without regard to
any object, and the write method displays "Shepherd" , which is the value of
the breed variable. The second write statement uses myDog.eval('breed')
which specifies the object myDog; the string "breed" is evaluated with regard
to the myDog object, and the write method displays "Lab" , which is the value
of the breed property of the myDog object.

function Dog(name,breed,color) {
this.name=name
this.breed=breed
this.color=color

}
myDog = new Dog("Gabby")
myDog.breed="Lab"
var breed='Shepherd'
document.write("<P>" + eval('breed'))
document.write("
" + myDog.eval('breed'))

Example 2. The following example uses eval within a function that defines an
object type, stone . The statement flint = new stone("x=42") creates the
object flint with the properties x , y , z , and z2 . The write statements display
the values of these properties as 42, 43, 44, and 45, respectively.

function stone(str) {
this.eval("this."+str)
this.eval("this.y=43")
this.z=44
this["z2"] = 45

}
flint = new stone("x=42")
document.write("
flint.x is " + flint.x)
document.write("
flint.y is " + flint.y)
document.write("
flint.z is " + flint.z)
document.write("
flint.z2 is " + flint.z2)

See also eval
164 JavaScript Reference

Object
toString

Returns a string representing the specified object.

Syntax toString()
toString(radix)

Parameters

Security Navigator 3.0: This method is tainted by default for the following objects:
Button , Checkbox , FileUpload , Hidden , History , Link , Location ,
Password , Radio , Reset , Select , Submit , Text , and Textarea .

For information on data tainting, see “Security” on page 55.

Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation. For example, the following examples require theDog to be
represented as a string:

document.write(theDog)
document.write("The dog is " + theDog)

You can use toString within your own code to convert an object into a string,
and you can create your own function to be called in place of the default
toString method.

Built-in toString methods

Every object type has a built-in toString method, which JavaScript calls
whenever it needs to convert an object to a string. If an object has no string
value and no user-defined toString method, toString returns "[object

type]" , where type is the object type or the name of the constructor function
that created the object. For example, if for an Image object named sealife
defined as shown below, sealife.toString() returns [object Image] .

Method of Object

Implemented in Navigator 2.0

radix (Optional) An integer between 2 and 16 specifying the base to use
for representing numeric values.
 , 165

Object
Some built-in classes have special definitions for their toString methods. See the
descriptions of this method for these objects:

Array , Boolean , Connection , database , DbPool , Function , Number

User-defined toString methods

You can create a function to be called in place of the default toString
method. The toString method takes no arguments and should return a string.
The toString method you create can be any value you want, but it will be
most useful if it carries information about the object.

The following code defines the Dog object type and creates theDog, an object
of type Dog:

function Dog(name,breed,color,sex) {
this.name=name
this.breed=breed
this.color=color
this.sex=sex

}

theDog = new Dog("Gabby","Lab","chocolate","girl")

The following code creates dogToString, the function that will be used in
place of the default toString method. This function generates a string
containing each property, of the form "property = value;" .

function dogToString() {
var ret = "Dog " + this.name + " is ["
for (var prop in this)

ret += " " + prop + " is " + this[prop] + ";"
return ret + "]"

}

The following code assigns the user-defined function to the object’s toString
method:

Dog.prototype.toString = dogToString

With the preceding code in place, any time theDog is used in a string context,
JavaScript automatically calls the dogToString function, which returns the
following string:

Dog Gabby is [name is Gabby; breed is Lab; color is chocolate; sex is girl;
toString is function dogToString() { var ret = "Object " + this.name + " is [";
for (var prop in this) { ret += " " + prop + " is " + this[prop] + ";"; } return ret
+ "]"; } ;]
166 JavaScript Reference

Object
An object’s toString method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

alert(theDog.toString())

Examples Example 1: The location object. The following example prints the string
equivalent of the current location.

document.write("location.toString() is " + location.toString() + "
")

The output is as follows:

location.toString() is file:///C|/TEMP/myprog.html

Example 2: Object with no string value. Assume you have an Image object
named sealife defined as follows:

Because the Image object itself has no special toString method,
sealife.toString() returns the following:

[object Image]

Example 3: The radix parameter. The following example prints the string
equivalents of the numbers 0 through 9 in decimal and binary.

for (x = 0; x < 10; x++) {
document.write("Decimal: ", x.toString(10), " Binary: ",

x.toString(2), "
")
}

The preceding example produces the following output:

Decimal: 0 Binary: 0
Decimal: 1 Binary: 1
Decimal: 2 Binary: 10
Decimal: 3 Binary: 11
Decimal: 4 Binary: 100
Decimal: 5 Binary: 101
Decimal: 6 Binary: 110
Decimal: 7 Binary: 111
Decimal: 8 Binary: 1000
Decimal: 9 Binary: 1001

See also Object.valueOf
 , 167

Object
unwatch

Removes a watchpoint set with the watch method.

Syntax unwatch(prop)

Parameters

Description The JavaScript debugger has functionality similar to that provided by this
method, as well as other debugging options. For information on the debugger,
see Getting Started with Netscape JavaScript Debugger1.

1. http://developer.netscape.com/library/documentation/jsdebug/index.htm

Example See watch .

valueOf

Returns the primitive value of the specified object.

Syntax valueOf()

Parameters None

Description Every object has a valueOf method that is automatically called when it is to be
represented as a primitive value. If an object has no primitive value, valueOf
returns the object itself.

You can use valueOf within your own code to convert an object into a
primitive value, and you can create your own function to be called in place of
the default valueOf method.

Every object type has a built-in valueOf method, which JavaScript calls
whenever it needs to convert an object to a primitive value.

Method of Object

Implemented in Navigator 4.0, Netscape Server 3.0

prop The name of a property of the object.

Method of Object

Implemented in Navigator 3.0
168 JavaScript Reference

Object
You rarely need to invoke the valueOf method yourself. JavaScript
automatically invokes it when encountering an object where a primitive value is
expected.

Table 4.2 shows the object types for which the valueOf method is most useful.
Most other objects have no primitive value.

You can create a function to be called in place of the default valueOf method.
Your function must take no arguments.

Suppose you have an object type myNumberType and you want to create a
valueOf method for it. The following code assigns a user-defined function to
the object’s valueOf method:

myNumberType.prototype.valueOf = new Function(functionText)

With the preceding code in place, any time an object of type myNumberType is
used in a context where it is to be represented as a primitive value, JavaScript
automatically calls the function defined in the preceding code.

An object’s valueOf method is usually invoked by JavaScript, but you can
invoke it yourself as follows:

myNumber.valueOf()

Note Objects in string contexts convert via the toString method, which is different
from String objects converting to string primitives using valueOf . All string
objects have a string conversion, if only "[object type]" . But many objects
do not convert to number, boolean, or function.

See also parseInt , Object.toString

Table 4.2 Use valueOf for these object types

Object type Value returned by valueOf

Number Primitive numeric value associated with the object.

Boolean Primitive boolean value associated with the object.

String String associated with the object.

Function Function reference associated with the object. For
example, typeof funObj returns "object" , but
typeof funObj.valueOf() returns "function" .
 , 169

Object
watch

Watches for a property to be assigned a value and runs a function when that
occurs.

Syntax watch(prop, handler)

Parameters

Description Watches for assignment to a property named prop in this object, calling
handler(prop, oldval, newval) whenever prop is set and storing the
return value in that property. A watchpoint can filter (or nullify) the value
assignment, by returning a modified newval (or oldval).

If you delete a property for which a watchpoint has been set, that watchpoint
does not disappear. If you later recreate the property, the watchpoint is still in
effect.

To remove a watchpoint, use the unwatch method.

The JavaScript debugger has functionality similar to that provided by this
method, as well as other debugging options. For information on the debugger,
see Getting Started with Netscape JavaScript Debugger1.

1. http://developer.netscape.com/library/documentation/jsdebug/index.htm

Example <script language="JavaScript1.2">
o = {p:1}
o.watch("p",

function (id,oldval,newval) {
document.writeln("o." + id + " changed from "

+ oldval + " to " + newval)
return newval

})

o.p = 2
o.p = 3
delete o.p
o.p = 4

Method of Object

Implemented in Navigator 4.0, Netscape Server 3.0

prop The name of a property of the object.

handler A function to call.
170 JavaScript Reference

String
o.unwatch('p')
o.p = 5

</script>

This script displays the following:

o.p changed from 1 to 2
o.p changed from 2 to 3
o.p changed from 3 to 4

String
An object representing a series of characters in a string.

Created by The String constructor:

new String(string);

Parameters

Description The String object is a built-in JavaScript object. You an treat any JavaScript
string as a String object.

A string can be represented as a literal enclosed by single or double quotation
marks; for example, "Netscape" or 'Netscape'.

Core object

Implemented in Navigator 2.0: Create a String object only by quoting characters.
Navigator 3.0, LiveWire 1.0: added String constructor; added
prototype property; added split method; added ability to pass
strings among scripts in different windows or frames (in previous
releases, you had to add an empty string to another window’s string
to refer to it)
Navigator 4.0, Netscape Server 3.0: added concat , match ,
replace , search , slice , and substr methods.

string Any string.
 , 171

String
Property
Summary

Method Summary

Property Description

length Reflects the length of the string.

prototype Allows the addition of properties to a String object.

Method Description

anchor Creates an HTML anchor that is used as a hypertext target.

big Causes a string to be displayed in a big font as if it were in a
BIG tag.

blink Causes a string to blink as if it were in a BLINK tag.

bold Causes a string to be displayed as if it were in a B tag.

charAt Returns the character at the specified index .

charCodeAt Returns a number indicating the ISO-Latin-1 codeset value of
the character at the given index.

concat Combines the text of two strings and returns a new string.

fixed Causes a string to be displayed in fixed-pitch font as if it were in
a TT tag.

fontcolor Causes a string to be displayed in the specified color as if it
were in a tag.

fontsize Causes a string to be displayed in the specified font size as if it
were in a tag.

fromCharCode Returns a string from the specified sequence of numbers that are
ISO-Latin-1 codeset values.

indexOf Returns the index within the calling String object of the first
occurrence of the specified value.

italics Causes a string to be italic, as if it were in an I tag.

lastIndexOf Returns the index within the calling String object of the last
occurrence of the specified value.

link Creates an HTML hypertext link that requests another URL.

match Used to match a regular expression against a string.
172 JavaScript Reference

String
Examples Example 1: String variable. The following statement creates a string variable:

var last_name = "Schaefer"

Example 2: String object properties. The following statements evaluate to 8,
"SCHAEFER," and "schaefer" :

last_name.length
last_name.toUpperCase()
last_name.toLowerCase()

Example 3: Accessing individual characters in a string. You can think of a
string as an array of characters. In this way, you can access the individual
characters in the string by indexing that array. For example, the following code:

replace Used to find a match between a regular expression and a string,
and to replace the matched substring with a new substring.

search Executes the search for a match between a regular expression
and a specified string.

slice Extracts a section of a string and returns a new string.

small Causes a string to be displayed in a small font, as if it were in a
SMALL tag.

split Splits a String object into an array of strings by separating the
string into substrings.

strike Causes a string to be displayed as struck-out text, as if it were in
a STRIKE tag.

sub Causes a string to be displayed as a subscript, as if it were in a
SUB tag.

substr Returns the characters in a string beginning at the specified
location through the specified number of characters.

substring Returns the characters in a string between two indexes into the
string.

sup Causes a string to be displayed as a superscript, as if it were in a
SUP tag.

toLowerCase Returns the calling string value converted to lowercase.

toUpperCase Returns the calling string value converted to uppercase.

Method Description
 , 173

String
var myString = "Hello"
document.write ("The first character in the string is " + myString[0])

displays “The first character in the string is H”

Example 4: Pass a string among scripts in different windows or frames.
The following code creates two string variables and opens a second window:

var lastName = new String("Schaefer")
var firstName = new String ("Jesse")
empWindow=window.open('string2.html','window1','width=300,height=300')

If the HTML source for the second window (string2.html) creates two string
variables, empLastName and empFirstName , the following code in the first
window assigns values to the second window’s variables:

empWindow.empFirstName=firstName
empWindow.empLastName=lastName

The following code in the first window displays the values of the second
window’s variables:

alert('empFirstName in empWindow is ' + empWindow.empFirstName)
alert('empLastName in empWindow is ' + empWindow.empLastName)

Properties

length

The length of the string.

Description For a null string, length is 0.

Examples The following example displays 8 in an Alert dialog box:

var x="Netscape"
alert("The string length is " + x.length)

Property of String

Read-only

Implemented in Navigator 2.0, LiveWire 1.0
174 JavaScript Reference

String
prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

Methods

anchor

Creates an HTML anchor that is used as a hypertext target.

Syntax anchor(nameAttribute)

Parameters

Description Use the anchor method with the document.write or document.writeln
methods to programmatically create and display an anchor in a document.
Create the anchor with the anchor method, and then call write or writeln to
display the anchor in a document. In server-side JavaScript, use the write
function to display the anchor.

In the syntax, the text string represents the literal text that you want the user
to see. The nameAttribute string represents the NAME attribute of the A tag.

Anchors created with the anchor method become elements in the
document.anchors array.

Examples The following example opens the msgWindow window and creates an anchor
for the table of contents:

var myString="Table of Contents"
msgWindow.document.writeln(myString.anchor("contents_anchor"))

Property of String

Implemented in Navigator 3.0, Netscape Server 3.0

Method of String

Implemented in Navigator 2.0, LiveWire 1.0

nameAttribute A string.
 , 175

String
The previous example produces the same output as the following HTML:

Table of Contents

In server-side JavaScript, you can generate this HTML by calling the write
function instead of using document.writeln .

See also String.link

big

Causes a string to be displayed in a big font as if it were in a BIG tag.

Syntax big()

Parameters None

Description Use the big method with the write or writeln methods to format and display
a string in a document. In server-side JavaScript, use the write function to
display the string.

Examples The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also String.fontsize , String.small

blink

Causes a string to blink as if it were in a BLINK tag.

Method of String

Implemented in Navigator 2.0, LiveWire 1.0

Method of String

Implemented in Navigator 2.0, LiveWire 1.0
176 JavaScript Reference

String
Syntax blink()

Parameters None

Description Use the blink method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write function
to display the string.

Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.bold , String.italics , String.strike

bold

Causes a string to be displayed as bold as if it were in a B tag.

Syntax bold()

Parameters None

Description Use the bold method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write function
to display the string.

Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"
document.write(worldString.blink())

Method of String

Implemented in Navigator 2.0, LiveWire 1.0
 , 177

String
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.blink , String.italics , String.strike

charAt

Returns the specified character from the string.

Syntax charAt(index)

Parameters

Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character in a string called stringName
is stringName.length - 1 . If the index you supply is out of range, JavaScript
returns an empty string.

Examples The following example displays characters at different locations in the string
"Brave new world" :

var anyString="Brave new world"

document.writeln("The character at index 0 is " + anyString.charAt(0))
document.writeln("The character at index 1 is " + anyString.charAt(1))
document.writeln("The character at index 2 is " + anyString.charAt(2))
document.writeln("The character at index 3 is " + anyString.charAt(3))
document.writeln("The character at index 4 is " + anyString.charAt(4))

These lines display the following:

Method of String

Implemented in Navigator 2.0, LiveWire 1.0

index An integer between 0 and 1 less than the length of the string.
178 JavaScript Reference

String
The character at index 0 is B
The character at index 1 is r
The character at index 2 is a
The character at index 3 is v
The character at index 4 is e

In server-side JavaScript, you can display the same output by calling the write
function instead of using document.write .

See also String.indexOf , String.lastIndexOf , String.split

charCodeAt

Returns a number indicating the ISO-Latin-1 codeset value of the character at
the given index.

Syntax charCodeAt(index)

Parameters

Description The ISO-Latin-1 codeset ranges from 0 to 255. The first 0 to 127 are a direct
match of the ASCII character set.

Example The following example returns 65, the ISO-Latin-1 codeset value for A.

"ABC".charCodeAt(0)

concat

Combines the text of two strings and returns a new string.

Syntax concat(string2)

Method of String

Implemented in Navigator 4.0, Netscape Server 3.0

index (Optional) An integer between 0 and 1 less than the length of the
string. The default value is 0.

Method of String

Implemented in Navigator 4.0, Netscape Server 3.0
 , 179

String
Parameters

Description concat combines the text from two strings and returns a new string. Changes
to the text in one string do not affect the other string.

Example The following example combines two strings into a new string.

<SCRIPT>
str1="The morning is upon us. "
str2="The sun is bright."
str3=str1.concat(str2)
document.writeln(str1)
document.writeln(str2)
document.writeln(str3)
</SCRIPT>

This writes:

The morning is upon us.
The sun is bright.
The morning is upon us. The sun is bright.

fixed

Causes a string to be displayed in fixed-pitch font as if it were in a TT tag.

Syntax fixed()

Parameters None

Description Use the fixed method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write function
to display the string.

Examples The following example uses the fixed method to change the formatting of a
string:

var worldString="Hello, world"
document.write(worldString.fixed())

string1 The first string.

string2 The second string.

Method of String

Implemented in Navigator 2.0, LiveWire 1.0
180 JavaScript Reference

String
The previous example produces the same output as the following HTML:

<TT>Hello, world</TT>

fontcolor

Causes a string to be displayed in the specified color as if it were in a <FONT

COLOR=color> tag.

Syntax fontcolor(color)

Parameters

Description Use the fontcolor method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write function
to display the string.

If you express color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA ,
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

The fontcolor method overrides a value set in the fgColor property.

Examples The following example uses the fontcolor method to change the color of a
string:

var worldString="Hello, world"

document.write(worldString.fontcolor("maroon") +
" is maroon in this line")

document.write("<P>" + worldString.fontcolor("salmon") +
" is salmon in this line")

document.write("<P>" + worldString.fontcolor("red") +
" is red in this line")

document.write("<P>" + worldString.fontcolor("8000") +
" is maroon in hexadecimal in this line")

document.write("<P>" + worldString.fontcolor("FA8072") +
" is salmon in hexadecimal in this line")

Method of String

Implemented in Navigator 2.0, LiveWire 1.0

color A string expressing the color as a hexadecimal RGB triplet or as a string
literal. String literals for color names are listed in Appendix B, “Color
Values,” in the JavaScript Guide.
 , 181

String
document.write("<P>" + worldString.fontcolor("FF00") +
" is red in hexadecimal in this line")

The previous example produces the same output as the following HTML:

Hello, world is maroon in this line
<P>Hello, world is salmon in this line
<P>Hello, world is red in this line

Hello, world
is maroon in hexadecimal in this line
<P>Hello, world
is salmon in hexadecimal in this line
<P>Hello, world
is red in hexadecimal in this line

fontsize

Causes a string to be displayed in the specified font size as if it were in a <FONT

SIZE=size> tag.

Syntax fontsize(size)

Parameters

Description Use the fontsize method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write function
to display the string.

When you specify size as an integer, you set the size of stringName to one of
the 7 defined sizes. When you specify size as a string such as "-2" , you adjust
the font size of stringName relative to the size set in the BASEFONT tag.

Examples The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

Method of String

Implemented in Navigator 2.0, LiveWire 1.0

size An integer between 1 and 7, a string representing a signed integer between 1
and 7.
182 JavaScript Reference

String
The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also String.big , String.small

fromCharCode

Returns a string created by using the specified sequence ISO-Latin-1 codeset
values.

Syntax fromCharCode(num1, ..., num N)

Parameters

Description This method returns a string and not a String object.

Because fromCharCode is a static method of String , you always use it as
String.fromCharCode() , rather than as a method of a String object you
created.

Examples Example 1. The following example returns the string "ABC".

String.fromCharCode(65,66,67)

Example 2. The which property of the KeyDown, KeyPress , and KeyUp events
contains the ASCII value of the key pressed at the time the event occurred. If
you want to get the actual letter, number, or symbol of the key, you can use
fromCharCode . The following example returns the letter, number, or symbol of
the KeyPress event's which property.

String.fromCharCode(KeyPress.which)

Method of String

Static

Implemented in Navigator 4.0, Netscape Server 3.0

num1, ...,
numN

A sequence of numbers that are ISO-Latin-1 codeset values.
 , 183

String
indexOf

Returns the index within the calling String object of the first occurrence of the
specified value, starting the search at fromIndex , or -1 if the value is not found.

Syntax indexOf(searchValue, fromIndex)

Parameters

Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character of a string called stringName
is stringName.length - 1 .

If stringName contains an empty string (""), indexOf returns an empty string.

The indexOf method is case sensitive. For example, the following expression
returns -1:

"Blue Whale".indexOf("blue")

Examples Example 1. The following example uses indexOf and lastIndexOf to locate
values in the string "Brave new world."

var anyString="Brave new world"

//Displays 8
document.write("<P>The index of the first w from the beginning is " +

anyString.indexOf("w"))
//Displays 10
document.write("<P>The index of the first w from the end is " +

anyString.lastIndexOf("w"))
//Displays 6
document.write("<P>The index of 'new' from the beginning is " +

anyString.indexOf("new"))
//Displays 6
document.write("<P>The index of 'new' from the end is " +

anyString.lastIndexOf("new"))

Method of String

Implemented in Navigator 2.0, LiveWire 1.0

searchValue A string representing the value to search for.

fromIndex (Optional) The location within the calling string to start the search
from. It can be any integer between 0 and 1 less than the length of
the string. The default value is 0.
184 JavaScript Reference

String
Example 2. The following example defines two string variables. The variables
contain the same string except that the second string contains uppercase letters.
The first writeln method displays 19. But because the indexOf method is case
sensitive, the string "cheddar" is not found in myCapString , so the second
writeln method displays -1.

myString="brie, pepper jack, cheddar"
myCapString="Brie, Pepper Jack, Cheddar"
document.writeln('myString.indexOf("cheddar") is ' +

myString.indexOf("cheddar"))
document.writeln('<P>myCapString.indexOf("cheddar") is ' +

myCapString.indexOf("cheddar"))

Example 3. The following example sets count to the number of occurrences
of the letter x in the string str :

count = 0;
pos = str.indexOf("x");
while (pos != -1) {

count++;
pos = str.indexOf("x",pos+1);

}

See also String.charAt , String.lastIndexOf , String.split

italics

Causes a string to be italic, as if it were in an I tag.

Syntax italics()

Parameters None

Description Use the italics method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write function
to display the string.

Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())

Method of String

Implemented in Navigator 2.0, LiveWire 1.0
 , 185

String
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.blink , String.bold , String.strike

lastIndexOf

Returns the index within the calling String object of the last occurrence of the
specified value. The calling string is searched backward, starting at fromIndex ,
or -1 if not found.

Syntax lastIndexOf(searchValue, fromIndex)

Parameters

Description Characters in a string are indexed from left to right. The index of the first
character is 0, and the index of the last character is stringName .length - 1.

The lastIndexOf method is case sensitive. For example, the following
expression returns -1:

"Blue Whale, Killer Whale".lastIndexOf("blue")

Examples The following example uses indexOf and lastIndexOf to locate values in the
string "Brave new world."

var anyString="Brave new world"

//Displays 8
document.write("<P>The index of the first w from the beginning is " +

Method of String

Implemented in Navigator 2.0, LiveWire 1.0

searchValue A string representing the value to search for.

fromIndex (Optional) The location within the calling string to start the
search from. It can be any integer between 0 and 1 less than
the length of the string. The default value is 1 less than the
length of the string.
186 JavaScript Reference

String
anyString.indexOf("w"))
//Displays 10
document.write("<P>The index of the first w from the end is " +

anyString.lastIndexOf("w"))
//Displays 6
document.write("<P>The index of 'new' from the beginning is " +

anyString.indexOf("new"))
//Displays 6
document.write("<P>The index of 'new' from the end is " +

anyString.lastIndexOf("new"))

In server-side JavaScript, you can display the same output by calling the write
function instead of using document.write .

See also String.charAt , String.indexOf , String.split

link

Creates an HTML hypertext link that requests another URL.

Syntax link(hrefAttribute)

Parameters

Description Use the link method to programmatically create a hypertext link, and then call
write or writeln to display the link in a document. In server-side JavaScript,
use the write function to display the link.

Links created with the link method become elements in the links array of the
document object. See document.links .

Examples The following example displays the word “Netscape” as a hypertext link that
returns the user to the Netscape home page:

var hotText="Netscape"
var URL="http://home.netscape.com"

document.write("Click to return to " + hotText.link(URL))

The previous example produces the same output as the following HTML:

Method of String

Implemented in Navigator 2.0, LiveWire 1.0

hrefAttribute Any string that specifies the HREF attribute of the A tag; it
should be a valid URL (relative or absolute).
 , 187

String
Click to return to Netscape

See also Anchor

match

Used to match a regular expression against a string.

Syntax match(regexp)

Parameters

Description If you want to execute a global match, or a case insensitive match, include the
g (for global) and i (for ignore case) flags in the regular expression. These can
be included separately or together. The following two examples below show
how to use these flags with match .

Note If you execute a match simply to find true or false, use String.search or the
regular expression test method.

Examples Example 1. In the following example, match is used to find 'Chapter' followed
by 1 or more numeric characters followed by a decimal point and numeric
character 0 or more times. The regular expression includes the i flag so that
case will be ignored.

<SCRIPT>
str = "For more information, see Chapter 3.4.5.1";
re = /(chapter \d+(\.\d)*)/i;
found = str.match(re);
document.write(found);
</SCRIPT>

This returns the array containing Chapter 3.4.5.1,Chapter 3.4.5.1,.1

'Chapter 3.4.5.1' is the first match and the first value remembered from
(Chapter \d+(\.\d)*) .

'.1' is the second value remembered from (\.\d) .

Method of String

Implemented in Navigator 4.0

regexp Name of the regular expression. It can be a variable name or a literal.
188 JavaScript Reference

String
Example 2. The following example demonstrates the use of the global and
ignore case flags with match .

<SCRIPT>
str = "abcDdcba";
newArray = str.match(/d/gi);
document.write(newArray);
</SCRIPT>

The returned array contains D, d.

replace

Used to find a match between a regular expression and a string, and to replace
the matched substring with a new substring.

Syntax replace(regexp, newSubStr)

Parameters

Description This method does not change the String object it is called on; it simply returns
a new string.

If you want to execute a global search and replace, or a case insensitive search,
include the g (for global) and i (for ignore case) flags in the regular expression.
These can be included separately or together. The following two examples
below show how to use these flags with replace .

Examples Example 1. In the following example, the regular expression includes the
global and ignore case flags which permits replace to replace each occurrence
of 'apples' in the string with 'oranges.'

<SCRIPT>
re = /apples/gi;
str = "Apples are round, and apples are juicy.";
newstr=str.replace(re, "oranges");

Method of String

Implemented in Navigator 4.0

regexp The name of the regular expression. It can be a variable name or a literal.

newSubStr The string to put in place of the string found with regexp . This string can
include the RegExp properties $1, ..., $9 , lastMatch ,
lastParen , leftContext , and rightContext .
 , 189

String
document.write(newstr)
</SCRIPT>

This prints "oranges are round, and oranges are juicy."

Example 2. In the following example, the regular expression is defined in
replace and includes the ignore case flag.

<SCRIPT>
str = "Twas the night before Xmas...";
newstr=str.replace(/xmas/i, "Christmas");
document.write(newstr)
</SCRIPT>

This prints "Twas the night before Christmas..."

Example 3. The following script switches the words in the string. For the
replacement text, the script uses the values of the $1 and $2 properties.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr = str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This prints "Smith, John".

search

Executes the search for a match between a regular expression and this String
object.

Syntax search(regexp)

Parameters

Description If successful, search returns the index of the regular expression inside the
string. Otherwise, it returns -1.

Method of String

Implemented in Navigator 4.0

regexp Name of the regular expression. It can be a variable name or a literal.
190 JavaScript Reference

String
When you want to know whether a pattern is found in a string use search
(similar to the regular expression test method); for more information (but
slower execution) use match (similar to the regular expression exec method).

Example The following example prints a message which depends on the success of the
test.

function testinput(re, str){
if (str.search(re) != -1)

midstring = " contains ";
else

midstring = " does not contain ";
document.write (str + midstring + re.source);

}

slice

Extracts a section of a string and returns a new string.

Syntax slice(beginslice,endSlice)

Parameters

Description slice extracts the text from one string and returns a new string. Changes to the
text in one string do not affect the other string.

slice extracts up to but not including endSlice . string.slice(1,4)
extracts the second character through the fourth character (characters indexed
1, 2, and 3).

As a negative index, endSlice indicates an offset from the end of the string.
string.slice(2,-1) extracts the third character through the second to last
character in the string.

Example The following example uses slice to create a new string.

<SCRIPT>
str1="The morning is upon us. "

Method of String

Implemented in Navigator 2.0, LiveWire 1.0

beginSlice The zero-based index at which to begin extraction.

endSlice (Optional) The zero-based index at which to end extraction. If
omitted, slice extracts to the end of the string.
 , 191

String
str2=str1.slice(3,-5)
document.write(str2)
</SCRIPT>

This writes:

morning is upon

small

Causes a string to be displayed in a small font, as if it were in a SMALL tag.

Syntax small()

Parameters None

Description Use the small method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write function
to display the string.

Examples The following example uses string methods to change the size of a string:

var worldString="Hello, world"

document.write(worldString.small())
document.write("<P>" + worldString.big())
document.write("<P>" + worldString.fontsize(7))

The previous example produces the same output as the following HTML:

<SMALL>Hello, world</SMALL>
<P><BIG>Hello, world</BIG>
<P><FONTSIZE=7>Hello, world</FONTSIZE>

See also String.big , String.fontsize

split

Splits a String object into an array of strings by separating the string into
substrings.

Method of String

Implemented in Navigator 2.0, LiveWire 1.0

Method of String
192 JavaScript Reference

String
Syntax split(separator, limit)

Parameters

Description The split method returns the new array.

When found, separator is removed from the string and the substrings are
returned in an array. If separator is omitted, the array contains one element
consisting of the entire string.

In Navigator 4.0, Split has the following additions:

• It can take a regular expression argument, as well as a fixed string, by
which to split the object string. If separator is a regular expression, any
included parenthesis cause submatches to be included in the returned
array.

• It can take a limit count so that it won't include trailing empty elements in
the resulting array.

• If you specify LANGUAGE="JavaScript1.2" in the SCRIPT tag,
string.split(" ") splits on any run of 1 or more white space characters
including spaces, tabs, line feeds, and carriage returns.

Examples Example 1. The following example defines a function that splits a string into
an array of strings using the specified separator. After splitting the string, the
function displays messages indicating the original string (before the split), the
separator used, the number of elements in the array, and the individual array
elements.

function splitString (stringToSplit,separator) {
arrayOfStrings = stringToSplit.split(separator)
document.write ('<P>The original string is: "' + stringToSplit + '"')
document.write ('
The separator is: "' + separator + '"')
document.write ("
The array has " + arrayOfStrings.length + " elements: ")

for (var i=0; i < arrayOfStrings.length; i++) {
document.write (arrayOfStrings[i] + " / ")

Implemented in Navigator 3.0, LiveWire 1.0

separator (Optional) Specifies the character to use for separating the string. The
separator is treated as a string. If separator is omitted, the array
returned contains one element consisting of the entire string.

limit (Optional) Integer specifying a limit on the number of splits to be found.
 , 193

String
}
}

var tempestString="Oh brave new world that has such people in it."
var monthString="Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"

var space=" "
var comma=","

splitString(tempestString,space)
splitString(tempestString)
splitString(monthString,comma)

This example produces the following output:

The original string is: "Oh brave new world that has such people in it."
The separator is: " "
The array has 10 elements: Oh / brave / new / world / that / has / such / people / in / it.
/

The original string is: "Oh brave new world that has such people in it."
The separator is: "undefined"
The array has 1 elements: Oh brave new world that has such people in it. /

The original string is: "Jan,Feb,Mar,Apr,May,Jun,Jul,Aug,Sep,Oct,Nov,Dec"
The separator is: ","
The array has 12 elements: Jan / Feb / Mar / Apr / May / Jun / Jul / Aug / Sep / Oct / Nov
/ Dec /

Example 2. Consider the following script:

<SCRIPT LANGUAGE="JavaScript1.2">
str="She sells seashells \nby the\n seashore"
document.write(str + "
")
a=str.split(" ")
document.write(a)
</SCRIPT>

Using LANGUAGE="JavaScript1.2" , this script produces

"She", "sells", "seashells", "by", "the", "seashore"

Without LANGUAGE="JavaScript1.2" , this script splits only on single space
characters, producing

"She", "sells", , , , "seashells", "by", , , "the", "seashore"

Example 3. In the following example, split looks for 0 or more spaces
followed by a semicolon followed by 0 or more spaces and, when found,
removes the spaces from the string. nameList is the array returned as a result
of split .
194 JavaScript Reference

String
<SCRIPT>
names = "Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris
Hand ";
document.write (names + "
" + "
");
re = /\s*;\s*/;
nameList = names.split (re);
document.write(nameList);
</SCRIPT>

This prints two lines; the first line prints the original string, and the second line
prints the resulting array.

Harry Trump ;Fred Barney; Helen Rigby ; Bill Abel ;Chris Hand
Harry Trump,Fred Barney,Helen Rigby,Bill Abel,Chris Hand

Example 4. In the following example, split looks for 0 or more spaces in a
string and returns the first 3 splits that it finds.

<SCRIPT LANGUAGE="JavaScript1.2">
myVar = " Hello World. How are you doing? ";
splits = myVar.split(" ", 3);
document.write(splits)
</SCRIPT>

This script displays the following:

["Hello", "World.", "How"]

See also String.charAt , String.indexOf , String.lastIndexOf

strike

Causes a string to be displayed as struck-out text, as if it were in a STRIKE tag.

Syntax strike()

Parameters None

Description Use the strike method with the write or writeln methods to format and
display a string in a document. In server-side JavaScript, use the write function
to display the string.

Method of String

Implemented in Navigator 2.0, LiveWire 1.0
 , 195

String
Examples The following example uses string methods to change the formatting of a
string:

var worldString="Hello, world"

document.write(worldString.blink())
document.write("<P>" + worldString.bold())
document.write("<P>" + worldString.italics())
document.write("<P>" + worldString.strike())

The previous example produces the same output as the following HTML:

<BLINK>Hello, world</BLINK>
<P>Hello, world
<P><I>Hello, world</I>
<P><STRIKE>Hello, world</STRIKE>

See also String.blink , String.bold , String.italics

sub

Causes a string to be displayed as a subscript, as if it were in a SUB tag.

Syntax sub()

Parameters None

Description Use the sub method with the write or writeln methods to format and display
a string in a document. In server-side JavaScript, use the write function to
generate the HTML.

Examples The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

document.write("This is what a " + superText.sup() + " looks like.")
document.write("<P>This is what a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also String.sup

Method of String

Implemented in Navigator 2.0, LiveWire 1.0
196 JavaScript Reference

String
substr

Returns the characters in a string beginning at the specified location through
the specified number of characters.

Syntax substr(start, length)

Parameters

Description start is a character index. The index of the first character is 0, and the index
of the last character is 1 less than the length of the string. substr begins
extracting characters at start and collects length number of characters.

If start is positive and is the length of the string or longer, substr returns no
characters.

If start is negative, substr uses it as a character index from the end of the
string. If start is negative and abs(start) is larger than the length of the
string, substr uses 0 is the start index.

If length is 0 or negative, substr returns no characters. If length is omitted,
start extracts characters to the end of the string.

Example Consider the following script:

<SCRIPT LANGUAGE="JavaScript1.2">

str = "abcdefghij"
document.writeln("(1,2): ", str.substr(1,2))
document.writeln("(-2,2): ", str.substr(-2,2))
document.writeln("(1): ", str.substr(1))
document.writeln("(-20, 2): ", str.substr(1,20))
document.writeln("(20, 2): ", str.substr(20,2))

</SCRIPT>

This script displays:

(1,2): bc
(-2,2): ij

Method of String

Implemented in Navigator 2.0, LiveWire 1.0

start Location at which to begin extracting characters.

length (Optional) The number of characters to extract
 , 197

String
(1): bcdefghij
(-20, 2): bcdefghij
(20, 2):

See also substring

substring

Returns a subset of a String object.

Syntax substring(indexA, indexB)

Parameters

Description substring extracts characters from indexA up to but not including indexB . In
particular:

• If indexA is less than 0, indexA is treated as if it were 0.

• If indexB is greater than stringName.length , indexB is treated as if it
were stringName.length .

• If indexA equals indexB , substring returns an empty string.

• If indexB is omitted, indexA extracts characters to the end of the string.

Using LANGUAGE="JavaScript1.2" in the SCRIPT tag,

• If indexA is greater than indexB , JavaScript produces a runtime error (out
of memory).

Without LANGUAGE="JavaScript1.2" ,

• If indexA is greater than indexB , JavaScript returns a substring beginning
with indexB and ending with indexA - 1 .

Examples Example 1. The following example uses substring to display characters from
the string "Netscape" :

Method of String

Implemented in Navigator 2.0, LiveWire 1.0

indexA An integer between 0 and 1 less than the length of the string.

indexB An integer between 0 and 1 less than the length of the string.
198 JavaScript Reference

String
var anyString="Netscape"

//Displays "Net"
document.write(anyString.substring(0,3))
document.write(anyString.substring(3,0))
//Displays "cap"
document.write(anyString.substring(4,7))
document.write(anyString.substring(7,4))
//Displays "Netscap"
document.write(anyString.substring(0,7))
//Displays "Netscape"
document.write(anyString.substring(0,8))
document.write(anyString.substring(0,10))

Example 2. The following example replaces a substring within a string. It will
replace both individual characters and substrings. The function call at the end
of the example changes the string "Brave New World" into "Brave New Web" .

function replaceString(oldS,newS,fullS) {
// Replaces oldS with newS in the string fullS

for (var i=0; i<fullS.length; i++) {
if (fullS.substring(i,i+oldS.length) == oldS) {

fullS = fullS.substring(0,i)+newS+fullS.substring(i+oldS.length,fullS.length)
}

}
return fullS

}

replaceString("World","Web","Brave New World")

Example 3. Using LANGUAGE="JavaScript1.2" , the following script produces
a runtime error (out of memory).

<SCRIPT LANGUAGE="JavaScript1.2">
str="Netscape"
document.write(str.substring(0,3);
document.write(str.substring(3,0);
</SCRIPT>

Without LANGUAGE="JavaScript1.2" , the above script prints

Net Net

In the second write , the index numbers are swapped.

See also substr
 , 199

String
sup

Causes a string to be displayed as a superscript, as if it were in a SUP tag.

Syntax sup()

Parameters None

Description Use the sup method with the write or writeln methods to format and display
a string in a document. In server-side JavaScript, use the write function to
generate the HTML.

Examples The following example uses the sub and sup methods to format a string:

var superText="superscript"
var subText="subscript"

document.write("This is what a " + superText.sup() + " looks like.")
document.write("<P>This is what a " + subText.sub() + " looks like.")

The previous example produces the same output as the following HTML:

This is what a ^{superscript} looks like.
<P>This is what a _{subscript} looks like.

See also String.sub

toLowerCase

Returns the calling string value converted to lowercase.

Syntax toLowerCase()

Parameters None

Description The toLowerCase method returns the value of the string converted to
lowercase. toLowerCase does not affect the value of the string itself.

Examples The following example displays the lowercase string "alphabet" :

Method of String

Implemented in Navigator 2.0, LiveWire 1.0

Method of String

Implemented in Navigator 2.0, LiveWire 1.0
200 JavaScript Reference

RegExp
var upperText="ALPHABET"
document.write(upperText.toLowerCase())

See also String.toUpperCase

toUpperCase

Returns the calling string value converted to uppercase.

Syntax toUpperCase()

Parameters None

Description The toUpperCase method returns the value of the string converted to
uppercase. toUpperCase does not affect the value of the string itself.

Examples The following example displays the string "ALPHABET":

var lowerText="alphabet"
document.write(lowerText.toUpperCase())

See also String.toLowerCase

RegExp
A regular expression object contains the pattern of a regular expression. It has
properties and methods for using that regular expression to find and replace
matches in strings.

In addition to the properties of an individual regular expression object that you
create using the RegExp constructor function, the predefined RegExp object has
static properties that are set whenever any regular expression is used.

Created by A literal text format or the RegExp constructor function.

Method of String

Implemented in Navigator 2.0, LiveWire 1.0

Core object

Implemented in Navigator 4.0, Netscape Server 3.0
 , 201

RegExp
The literal format is used as follows:

/ pattern / flags

The constructor function is used as follows:

new RegExp(" pattern ", " flags ")

Parameters

Notice that the parameters to the literal format do not use quotation marks to
indicate strings, while the parameters to the constructor function do use
quotation marks. So the following expressions create the same regular
expression:

/ab+c/i
new RegExp("ab+c", "i")

Description When using the constructor function, the normal string escape rules (preceding
special characters with \ when included in a string) are necessary. For example,
the following are equivalent:

re = new RegExp("\\w+")
re = /\w+/

pattern The text of the regular expression.

flags (Optional) If specified, flags can have one of the following 3
values:

• g: global match

• i : ignore case

• gi : both global match and ignore case
202 JavaScript Reference

RegExp
Table 4.3 provides a complete list and description of the special characters that
can be used in regular expressions.

Table 4.3 Special characters in regular expressions.

Character Meaning

\ For characters that are usually treated literally, indicates that the next
character is special and not to be interpreted literally.
For example, /b/ matches the character 'b'. By placing a backslash in
front of b, that is by using /\b/ , the character becomes special to
mean match a word boundary.
-or-
For characters that are usually treated specially, indicates that the next
character is not special and should be interpreted literally.
For example, * is a special character that means 0 or more occurrences
of the preceding character should be matched; for example, /a*/
means match 0 or more a's. To match * literally, precede the it with a
backslash; for example, /a*/ matches 'a*'.

^ Matches beginning of input or line.
For example, /^A/ does not match the 'A' in "an A," but does match it
in "An A."

$ Matches end of input or line.
For example, /t$/ does not match the 't' in "eater", but does match it
in "eat"

* Matches the preceding character 0 or more times.
For example, /bo*/ matches 'boooo' in "A ghost booooed" and 'b' in
"A bird warbled", but nothing in "A goat grunted".

+ Matches the preceding character 1 or more times. Equivalent to {1,} .
For example, /a+/ matches the 'a' in "candy" and all the a's in
"caaaaaaandy."

? Matches the preceding character 0 or 1 time.
For example, /e?le?/ matches the 'el' in "angel" and the 'le' in
"angle."

. (The decimal point) matches any single character except the newline
character.
For example, /.n/ matches 'an' and 'on' in "nay, an apple is on the
tree", but not 'nay'.
 , 203

RegExp
(x) Matches 'x' and remembers the match.
For example, /(foo)/ matches and remembers 'foo' in "foo bar." The
matched substring can be recalled from the resulting array’s elements
[1] , ..., [n] , or from the predefined RegExp object’s properties $1 ,
..., $9 .

x|y Matches either 'x' or 'y'.
For example, /green|red/ matches 'green' in "green apple" and 'red'
in "red apple."

{n} Where n is a positive integer. Matches exactly n occurrences of the
preceding character.
For example, /a{2}/ doesn't match the 'a' in "candy," but it matches
all of the a's in "caandy," and the first two a's in "caaandy."

{n,} Where n is a positive integer. Matches at least n occurrences of the
preceding character.
For example, /a{2,} doesn't match the 'a' in "candy", but matches all
of the a's in "caandy" and in "caaaaaaandy."

{n,m} Where n and m are positive integers. Matches at least n and at most m
occurrences of the preceding character.
For example, /a{1,3}/ matches nothing in "cndy", the 'a' in "candy,"
the first two a's in "caandy," and the first three a's in "caaaaaaandy"
Notice that when matching "caaaaaaandy", the match is "aaa", even
though the original string had more a’s in it.

[xyz] A character set. Matches any one of the enclosed characters. You can
specify a range of characters by using a hyphen.
For example, [abcd] is the same as [a-c] . They match the 'b' in
"brisket" and the 'c' in "ache".

[^xyz] A negated or complemented character set. That is, it matches anything
that is not enclosed in the brackets. You can specify a range of
characters by using a hyphen.
For example, [^abc] is the same as [^a-c] . They initially match 'r'
in "brisket" and 'h' in "chop."

[\b] Matches a backspace. (Not to be confused with \b .)

\b Matches a word boundary, such as a space. (Not to be confused with
[\b] .)
For example, /\bn\w/ matches the 'no' in "noonday";/\wy\b/
matches the 'ly' in "possibly yesterday."

Table 4.3 Special characters in regular expressions. (Continued)

Character Meaning
204 JavaScript Reference

RegExp
\B Matches a non-word boundary.
For example, /\w\Bn/ matches 'on' in "noonday", and /y\B\w/
matches 'ye' in "possibly yesterday."

\c X Where X is a control character. Matches a control character in a string.
For example, /\cM/ matches control-M in a string.

\d Matches a digit character. Equivalent to [0-9] .
For example, /\d/ or /[0-9]/ matches '2' in "B2 is the suite
number."

\D Matches any non-digit character. Equivalent to [^0-9] .
For example, /\D/ or /[^0-9]/ matches 'B' in "B2 is the suite
number."

\f Matches a form-feed.

\n Matches a linefeed.

\r Matches a carriage return.

\s Matches a single white space character, including space, tab, form feed,
line feed. Equivalent to [\f\n\r\t\v] .
for example, /\s\w*/ matches ' bar' in "foo bar."

\S Matches a single character other than white space. Equivalent to [^
\f\n\r\t\v] .
For example, /\S/\w* matches 'foo' in "foo bar."

\t Matches a tab

\v Matches a vertical tab.

\w Matches any alphanumeric character including the underscore.
Equivalent to [A-Za-z0-9_] .
For example, /\w/ matches 'a' in "apple," '5' in "$5.28," and '3' in "3D."

\W Matches any non-word character. Equivalent to [^A-Za-z0-9_] .
For example, /\W/ or /[^$A-Za-z0-9_]/ matches '%' in "50%."

Table 4.3 Special characters in regular expressions. (Continued)

Character Meaning
 , 205

RegExp
The literal notation provides compilation of the regular expression when the
expression is evaluated. Use literal notation when the regular expression will
remain constant. For example, if you use literal notation to construct a regular
expression used in a loop, the regular expression won't be recompiled on each
iteration.

The constructor of the regular expression object, for example,
new RegExp("ab+c") , provides runtime compilation of the regular expression.
Use the constructor function when you know the regular expression pattern
will be changing, or you don't know the pattern and are getting it from another
source, such as user input. Once you have a defined regular expression, and if
the regular expression is used throughout the script and may change, you can
use the compile method to compile a new regular expression for efficient
reuse.

A separate predefined RegExp object is available in each window; that is, each
separate thread of JavaScript execution gets its own RegExp object. Because
each script runs to completion without interruption in a thread, this assures that
different scripts do not overwrite values of the RegExp object.

The predefined RegExp object contains the static properties input , multiline ,
lastMatch , lastParen , leftContext , rightContext , and $1 through $9 .
The input and multiline properties can be preset. The values for the other
static properties are set after execution of the exec and test methods of an
individual regular expression object, and after execution of the match and
replace methods of String .

\ n Where n is a positive integer. A back reference to the last substring
matching the n parenthetical in the regular expression (counting left
parentheses).
For example, /apple(,)\sorange\1/ matches 'apple, orange', in
"apple, orange, cherry, peach." A more complete example follows this
table.
Note: If the number of left parentheses is less than the number
specified in \n, the \n is taken as an octal escape as described in the
next row.

\o octal
\x hex

Where \o octal is an octal escape value or \x hex is a hexadecimal
escape value. Allows you to embed ASCII codes into regular
expressions.

Table 4.3 Special characters in regular expressions. (Continued)

Character Meaning
206 JavaScript Reference

RegExp
Property
Summary

Note that several of the RegExp properties have both long and short (Perl-like)
names. Both names always refer to the same value. Perl is the programming
language from which JavaScript modeled its regular expressions.

Method Summary

Property Description

$1, ..., $9 Parenthesized substring matches, if any.

$_ See input .

$* See multiline .

$& See lastMatch .

$+ See lastParen .

$‘ See leftContext .

$’ See rightContext .

global Whether or not to test the regular expression against all possible
matches in a string, or only against the first.

ignoreCase Whether or not to ignore case while attempting a match in a
string.

input The string against which a regular expression is matched.

lastIndex The index at which to start the next match.

lastMatch The last matched characters.

lastParen The last parenthesized substring match, if any.

leftContext The substring preceding the most recent match.

multiline Whether or not to search in strings across multiple lines.

rightContext The substring following the most recent match.

source The text of the pattern.

Method Description

compile Compiles a regular expression object.

exec Executes a search for a match in its string parameter.

test Tests for a match in its string parameter.
 , 207

RegExp
Examples Example 1. The following script uses the replace method to switch the words
in the string. For the replacement text, the script uses the values of the $1 and
$2 properties of the global RegExp object. Note that the RegExp object name is
not be prepended to the $ properties when they are passed as the second
argument to the replace method.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This displays "Smith, John".

Example 2. In the following example, RegExp.input is set by the Change
event. In the getInfo function, the exec method uses the value of
RegExp.input as its argument. Note that RegExp is prepended to the $
properties.

<HTML>

<SCRIPT LANGUAGE="JavaScript1.2">
function getInfo() {

re = /(\w+)\s(\d+)/;
re.exec();
window.alert(RegExp.$1 + ", your age is " + RegExp.$2);

}
</SCRIPT>

Enter your first name and your age, and then press Enter.

<FORM>
<INPUT TYPE:"TEXT" NAME="NameAge" onChange="getInfo(this);">
</FORM>

</HTML>

Properties

$1, ..., $9

Properties that contain parenthesized substring matches, if any.

Property of RegExp

Static, Read-only
208 JavaScript Reference

RegExp
Description Because input is static, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp.input .

The number of possible parenthesized substrings is unlimited, but the
predefined RegExp object can only hold the last nine. You can access all
parenthesized substrings through the returned array's indexes.

These properties can be used in the replacement text for the String.replace
method. When used this way, do not prepend them with RegExp. The example
below illustrates this. When parentheses are not included in the regular
expression, the script interprets $n 's literally (where n is a positive integer).

Examples The following script uses the replace method to switch the words in the
string. For the replacement text, the script uses the values of the $1 and $2
properties of the global RegExp object. Note that the RegExp object name is not
be prepended to the $ properties when they are passed as the second
argument to the replace method.

<SCRIPT LANGUAGE="JavaScript1.2">
re = /(\w+)\s(\w+)/;
str = "John Smith";
newstr=str.replace(re, "$2, $1");
document.write(newstr)
</SCRIPT>

This displays "Smith, John".

$_

See input .

$*

See multiline .

$&

See lastMatch .

Implemented in Navigator 4.0, Netscape Server 3.0
 , 209

RegExp
$+

See lastParen .

$‘

See leftContext .

$’

See rightContext .

global

Whether or not the "g" flag is used with the regular expression.

Description global is a property of an individual regular expression object.

The value of global is true if the "g" flag was used; otherwise, false . The
"g" flag indicates that the regular expression should be tested against all
possible matches in a string.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

ignoreCase

Whether or not the "i" flag is used with the regular expression.

Description ignoreCase is a property of an individual regular expression object.

Property of RegExp

Read-only

Implemented in Navigator 4.0, Netscape Server 3.0

Property of RegExp

Read-only

Implemented in Navigator 4.0, Netscape Server 3.0
210 JavaScript Reference

RegExp
The value of ignoreCase is true if the "i" flag was used; otherwise, false .
The "i" flag indicates that case should be ignored while attempting a match in
a string.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

input

The string against which a regular expression is matched. $_ is another name
for the same property.

Description Because input is static, it is not a property of an individual regular expression
object. Instead, you always use it as RegExp.input .

If no string argument is provided to a regular expression's exec or test
methods, and if RegExp.input has a value, its value is used as the argument to
that method.

The script or the browser can preset the input property. If preset and if no
string argument is explicitly provided, the value of input is used as the string
argument to the exec or test methods of the regular expression object. input
is set by the browser in the following cases:

• When an event handler is called for a TEXT form element, input is set to
the value of the contained text.

• When an event handler is called for a TEXTAREA form element, input is set
to the value of the contained text. Note that multiline is also set to true
so that the match can be executed over the multiple lines of text.

• When an event handler is called for a SELECT form element, input is set to
the value of the selected text.

• When an event handler is called for a Link object, input is set to the value
of the text between and .

The value of the input property is cleared after the event handler completes.

Property of RegExp

Static

Implemented in Navigator 4.0, Netscape Server 3.0
 , 211

RegExp
lastIndex

A read/write integer property that specifies the index at which to start the next
match.

Description lastIndex is a property of an individual regular expression object.

This property is set only if the regular expression used the "g" flag to indicate
a global search. The following rules apply:

• If lastIndex is greater than the length of the string, regexp.test and
regexp.exec fail, and lastIndex is set to 0.

• If lastIndex is equal to the length of the string and if the regular
expression matches the empty string, then the regular expression matches
input starting at lastIndex .

• If lastIndex is equal to the length of the string and if the regular
expression does not match the empty string, then the regular expression
mismatches input, and lastIndex is reset to 0.

• Otherwise, lastIndex is set to the next position following the most recent
match.

For example, consider the following sequence of statements:

lastMatch

The last matched characters. $& is another name for the same property.

Property of RegExp

Implemented in Navigator 4.0, Netscape Server 3.0

re = /(hi)?/
g

Matches the empty string.

re("hi") Returns ["hi", "hi"] with lastIndex equal to 2.

re("hi") Returns [""] , an empty array whose zeroth element is
the match string. In this case, the empty string because
lastIndex was 2 (and still is 2) and "hi" has length 2.

Property of RegExp
212 JavaScript Reference

RegExp
Description Because lastMatch is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.lastMatch .

lastParen

The last parenthesized substring match, if any. $+ is another name for the same
property.

Description Because lastParen is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.lastParen .

leftContext

The substring preceding the most recent match. $‘ is another name for the
same property.

Description Because leftContext is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.leftContext .

multiline

Reflects whether or not to search in strings across multiple lines. $* is another
name for the same property.

Static, Read-only

Implemented in Navigator 4.0, Netscape Server 3.0

Property of RegExp

Static, Read-only

Implemented in Navigator 4.0, Netscape Server 3.0

Property of RegExp

Static, Read-only

Implemented in Navigator 4.0, Netscape Server 3.0

Property of RegExp

Static

Implemented in Navigator 4.0, Netscape Server 3.0
 , 213

RegExp
Description Because multiline is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.multiline .

The value of multiline is true if multiple lines are searched, false if
searches must stop at line breaks.

The script or the browser can preset the multiline property. When an event
handler is called for a TEXTAREA form element, the browser sets multiline to
true . multiline is cleared after the event handler completes. This means that,
if you've preset multiline to true , it is reset to false after the execution of any
event handler.

rightContext

The substring following the most recent match. $' is another name for the
same property.

Description Because rightContext is static, it is not a property of an individual regular
expression object. Instead, you always use it as RegExp.rightContext .

source

A read-only property that contains the text of the pattern, excluding the forward
slashes and "g" or "i" flags.

Description source is a property of an individual regular expression object.

You cannot change this property directly. However, calling the compile
method changes the value of this property.

Property of RegExp

Static, Read-only

Implemented in Navigator 4.0, Netscape Server 3.0

Property of RegExp

Read-only

Implemented in Navigator 4.0, Netscape Server 3.0
214 JavaScript Reference

RegExp
Methods

compile

Compiles a regular expression object during execution of a script.

Syntax regexp.compile(pattern, flags)

Parameters

Description Use the compile method to compile a regular expression created with the
RegExp constructor function. This forces compilation of the regular expression
once only which means the regular expression isn't compiled each time it is
encountered. Use the compile method when you know the regular expression
will remain constant (after getting its pattern) and will be used repeatedly
throughout the script.

You can also use the compile method to change the regular expression during
execution. For example, if the regular expression changes, you can use the
compile method to recompile the object for more efficient repeated use.

Calling this method changes the value of the regular expression’s source ,
global , and ignoreCase properties.

Method of RegExp

Implemented in Navigator 4.0, Netscape Server 3.0

regexp The name of the regular expression. It can be a variable name
or a literal.

pattern A string containing the text of the regular expression.

flags (Optional) If specified, flags can have one of the following 3
values:

• "g" : global match

• "i" : ignore case

• "gi" : both global match and ignore case
 , 215

RegExp
exec

Executes the search for a match in a specified string. Returns a result array.

Syntax regexp.exec(str)
regexp(str)

Parameters

Description As shown in the syntax description, a regular expression’s exec method call be
called either directly, (with regexp.exec(str)) or indirectly (with
regexp(str)).

If you are executing a match simply to find true or false , use the test
method or the String search method.

If the match succeeds, the exec method returns an array and updates
properties of the regular expression object and the predefined regular
expression object, RegExp. If the match fails, the exec method returns null .

Consider the following example:

<SCRIPT LANGUAGE="JavaScript1.2">
//Match one d followed by one or more b's followed by one d
//Remember matched b's and the following d
//Ignore case
myRe=/d(b+)(d)/ig;
myArray = myRe.exec("cdbBdbsbz");
</SCRIPT>

The following table shows the results for this script:

Method of RegExp

Implemented in Navigator 4.0, Netscape Server 3.0

regexp The name of the regular expression. It can be a variable name
or a literal.

str (Optional) The string against which to match the regular
expression. If omitted, the value of RegExp.input is used.
216 JavaScript Reference

RegExp
If your regular expression uses the "g" flag, you can use the exec method
multiple times to find successive matches in the same string. When you do so,
the search starts at the substring of str specified by the regular expression’s
lastIndex property. For example, assume you have this script:

<SCRIPT LANGUAGE="JavaScript1.2">
myRe=/ab*/g;
str = "abbcdefabh"

Object Property/Index Description Example

myArray The contents of myArray ["dbBd", "bB", "d"]

index The 0-based index of the match in the
string

1

input The original string cdbBdbsbz

[0] The last matched characters dbBd

[1], ...[n] The parenthesized substring matches, if
any. The number of possible
parenthesized substrings is unlimited.

[1] = bB
[2] = d

myRe lastIndex The index at which to start the next
match.

5

ignoreCase Indicates if the "i" flag was used to
ignore case

true

global Indicates if the "g" flag was used for a
global match

true

source The text of the pattern d(b+)(d)

RegExp lastMatch
$&

The last matched characters dbBd

leftContext
$`

The substring preceding the most recent
match

c

rightContext
$'

The substring following the most recent
match

bsbz

$1, ...$9 The parenthesized substring matches, if
any. The number of possible
parenthesized substrings is unlimited, but
RegExp can only hold the last nine.

$1 = bB
$2 = d

lastParen
$+

The last parenthesized substring match, if
any.

d

 , 217

RegExp
myArray = myRe.exec(str);
document.writeln("Found " + myArray[0] +

". Next match starts at " + myRe.lastIndex)
mySecondArray = myRe.exec(str);
document.writeln("Found " + mySecondArray[0] +

". Next match starts at " + myRe.lastIndex)
</SCRIPT>

This script displays the following text:

Found abb. Next match starts at 3
Found ab. Next match starts at 9

Examples In the following example, the user enters a name and the script executes a
match against the input. It then cycles through the array to see if other names
match the user's name.

This script assumes that first names of registered party attendees are preloaded
into the array A, perhaps by gathering them from a party database.

<HTML>

<SCRIPT LANGUAGE="JavaScript1.2">
A = ["Frank", "Emily", "Jane", "Harry", "Nick", "Beth", "Rick",

"Terrence", "Carol", "Ann", "Terry", "Frank", "Alice", "Rick",
"Bill", "Tom", "Fiona", "Jane", "William", "Joan", "Beth"]

function lookup() {
firstName = /\w+/i();
if (!firstName)

window.alert (RegExp.input + " isn't a name!");
else {

count = 0;
for (i=0; i<A.length; i++)

if (firstName[0].toLowerCase() == A[i].toLowerCase()) count++;
if (count ==1)

midstring = " other has ";
else

midstring = " others have ";
window.alert ("Thanks, " + count + midstring + "the same name!")

}
}

</SCRIPT>

Enter your first name and then press Enter.

<FORM> <INPUT TYPE:"TEXT" NAME="FirstName" onChange="lookup(this);"> </
FORM>

</HTML>
218 JavaScript Reference

RegExp
test

Executes the search for a match between a regular expression and a specified
string. Returns true or false .

Syntax regexp.test(str)

Parameters

Description When you want to know whether a pattern is found in a string use the test
method (similar to the String.search method); for more information (but
slower execution) use the exec method (similar to the String.match method).

Example The following example prints a message which depends on the success of the
test:

function testinput(re, str){
if (re.test(str))

midstring = " contains ";
else

midstring = " does not contain ";
document.write (str + midstring + re.source);

}

Method of RegExp

Implemented in Navigator 4.0, Netscape Server 3.0

regexp The name of the regular expression. It can be a variable name or a literal.

str (Optional) The string against which to match the regular expression. If
omitted, the value of RegExp.input is used.
 , 219

RegExp

220 JavaScript Reference

C h a p t e r

5
Document
This chapter deals with the document and its associated objects, document ,
Layer , Link , Anchor , Area , Image , and Applet .

Table 5.1 summarizes the objects in this chapter.

Table 5.1 Document objects

Object Description

Anchor A place in a document that is the target of a hypertext
link.

Applet Includes a Java applet in a web page.

Area Defines an area of an image as an image map.

document Contains information on the current document, and
provides methods for displaying HTML output to the
user.

Image An image on an HTML form.

Layer Corresponds to a layer in an HTML page and provides a
means for manipulating that layer.

Link A piece of text, an image, or an area of an image
identified as a hypertext link.
Chapter 5, Document 221

document
document
Contains information about the current document, and provides methods for
displaying HTML output to the user.

Created by The HTML BODY tag. The JavaScript runtime engine creates a document object
for each HTML page. Each Window object has a document property whose
value is a document object.

To define a document object, use standard HTML syntax for the BODY tag with
the addition of JavaScript event handlers.

Event handlers The onBlur , onFocus , onLoad , and onUnload event handlers are specified in
the BODY tag but are actually event handlers for the Window object. The
following are event handlers for the document object.
• onClick

• onDblClick

• onKeyDown

• onKeyPress

• onKeyUp

• onMouseDown

• onMouseUp

Description An HTML document consists of HEAD and BODY tags. The HEAD tag includes
information on the document’s title and base (the absolute URL base to be used
for relative URL links in the document). The BODY tag encloses the body of a
document, which is defined by the current URL. The entire body of the
document (all other HTML elements for the document) goes within the BODY
tag.

You can load a new document by setting the Window.location property.

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added onBlur and onFocus syntax; added applets ,
domain , embeds, forms , formName , images , and plugins
properties.
Navigator 4.0: added layers property; added captureEvents ,
getSelection , handleEvent , releaseEvents , and
routeEvent methods.
222 JavaScript Reference

document
You can clear the document pane (and remove the text, form elements, and so
on so they do not redisplay) with these statements:

document.close();
document.open();
document.write();

You can omit the document.open call if you are writing text or HTML, since
write does an implicit open of that MIME type if the document stream is
closed.

You can refer to the anchors, forms, and links of a document by using the
anchors , forms , and links arrays. These arrays contain an entry for each
anchor, form, or link in a document and are properties of the document object.

Do not use location as a property of the document object; use the
document.URL property instead. The document.location property, which is a
synonym for document.URL , will be removed in a future release.

Property
Summary

Property Description

alinkColor A string that specifies the ALINK attribute.

anchors An array containing an entry for each anchor in the document.

applets An array containing an entry for each applet in the document.

bgColor A string that specifies the BGCOLOR attribute.

cookie Specifies a cookie.

domain Specifies the domain name of the server that served a
document.

embeds An array containing an entry for each plug-in in the document.

fgColor A string that specifies the TEXT attribute.

formName A separate property for each named form in the document.

forms An array a containing an entry for each form in the document.

images An array containing an entry for each image in the document.

lastModified A string that specifies the date the document was last modified.

layers Array containing an entry for each layer within the document.

linkColor A string that specifies the LINK attribute.

links An array containing an entry for each link in the document.
Chapter 5, Document 223

document
Method Summary

Examples The following example creates two frames, each with one document. The
document in the first frame contains links to anchors in the document of the
second frame. Each document defines its colors.

doc0.html , which defines the frames, contains the following code:

<HTML>
<HEAD>
<TITLE>Document object example</TITLE>
</HEAD>

plugins An array containing an entry for each plug-in in the document.

referrer A string that specifies the URL of the calling document.

title A string that specifies the contents of the TITLE tag.

URL A string that specifies the complete URL of a document.

vlinkColor A string that specifies the VLINK attribute.

Property Description

Method Description

captureEvents Sets the document to capture all events of the specified type.

close Closes an output stream and forces data to display.

getSelection Returns a string containing the text of the current selection.

handleEvent Invokes the handler for the specified event.

open Opens a stream to collect the output of write or writeln
methods.

releaseEvents Sets the window or document to release captured events of
the
specified type, sending the event to objects further along the
event hierarchy.

routeEvent Passes a captured event along the normal event hierarchy.

write Writes one or more HTML expressions to a document in the
specified window.

writeln Writes one or more HTML expressions to a document in the
specified window and follows them with a newline character.
224 JavaScript Reference

document
<FRAMESET COLS="30%,70%">
<FRAME SRC="doc1.html" NAME="frame1">
<FRAME SRC="doc2.html" NAME="frame2">
</FRAMESET>
</HTML>

doc1.html , which defines the content for the first frame, contains the following
code:

<HTML>
<SCRIPT>
</SCRIPT>
<BODY

BGCOLOR="antiquewhite"
TEXT="darkviolet"
LINK="fuchsia"
ALINK="forestgreen"
VLINK="navy">

<P>Some links
Numbers
Colors
Music types
Countries
</BODY>
</HTML>

doc2.html , which defines the content for the second frame, contains the
following code:

<HTML>
<SCRIPT>
</SCRIPT>
<BODY

BGCOLOR="oldlace" onLoad="alert('Hello, World.')"
TEXT="navy">

<P>Some numbers
one
two
three
four
<P>Some colors
red
orange
yellow
green
<P>Some music types
R&B
Jazz
Soul
Reggae
Chapter 5, Document 225

document
<P>Some countries
Afghanistan
Brazil
Canada
Finland
</BODY>
</HTML>

See also Frame , Window

Properties

alinkColor

A string specifying the color of an active link (after mouse-button down, but
before mouse-button up).

Description The alinkColor property is expressed as a hexadecimal RGB triplet or as one
of the string literals listed in Appendix B, “Color Values,” in the JavaScript
Guide This property is the JavaScript reflection of the ALINK attribute of the
BODY tag. You cannot set this property after the HTML source has been through
layout.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA ,
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

Examples The following example sets the color of active links using a string literal:

document.alinkColor="aqua"

The following example sets the color of active links to aqua using a
hexadecimal triplet:

document.alinkColor="00FFFF"

See also document.bgColor , document.fgColor , document.linkColor ,
document.vlinkColor

Property of document

Implemented in Navigator 2.0
226 JavaScript Reference

document
anchors

An array of objects corresponding to named anchors in source order.

Description You can refer to the Anchor objects in your code by using the anchors array.
This array contains an entry for each A tag containing a NAME attribute in a
document; these entries are in source order. For example, if a document
contains three named anchors whose NAME attributes are anchor1 , anchor2 ,
and anchor3 , you can refer to the anchors either as:

document.anchors["anchor1"]
document.anchors["anchor2"]
document.anchors["anchor3"]

or as:

document.anchors[0]
document.anchors[1]
document.anchors[2]

To obtain the number of anchors in a document, use the length property:
document.anchors.length . If a document names anchors in a systematic way
using natural numbers, you can use the anchors array and its length property
to validate an anchor name before using it in operations such as setting
location.hash .

applets

An array of objects corresponding to the applets in a document in source order.

Property of document

Read-only

Implemented in Navigator 2.0

Property of document

Read-only

Implemented in Navigator 3.0
Chapter 5, Document 227

document
Description You can refer to the applets in your code by using the applets array. This
array contains an entry for each Applet object (APPLET tag) in a document;
these entries are in source order. For example, if a document contains three
applets whose NAME attributes are app1 , app2 , and app3 , you can refer to the
anchors either as:

document.applets["app1"]
document.applets["app2"]
document.applets["app3"]

or as:

document.applets[0]
document.applets[1]
document.applets[2]

bgColor

A string specifying the color of the document background.

Description The bgColor property is expressed as a hexadecimal RGB triplet or as one of
the string literals listed in Appendix B, “Color Values,” in the JavaScript Guide.
This property is the JavaScript reflection of the BGCOLOR attribute of the BODY
tag. The default value of this property is set by the user with the preferences
dialog box.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA ,
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

Examples The following example sets the color of the document background to aqua
using a string literal:

document.bgColor="aqua"

The following example sets the color of the document background to aqua
using a hexadecimal triplet:

document.bgColor="00FFFF"

See also document.alinkColor , document.fgColor , document.linkColor ,
document.vlinkColor

Property of document

Implemented in Navigator 2.0
228 JavaScript Reference

document
cookie

String value representing all of the cookies associated with this document.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description A cookie is a small piece of information stored by the web browser in the
cookies.txt file. Use string methods such as substring , charAt , indexOf ,
and lastIndexOf to determine the value stored in the cookie. See the
JavaScript Guide for a complete specification of the cookie syntax.

You can set the cookie property at any time.

The "expires=" component in the cookie file sets an expiration date for the
cookie, so it persists beyond the current browser session. This date string is
formatted as follows:

Wdy, DD-Mon-YY HH:MM:SS GMT

This format represents the following values:

• Wdy is a string representing the full name of the day of the week.

• DD is an integer representing the day of the month.

• Mon is a string representing the three-character abbreviation of the month.

• YY is an integer representing the last two digits of the year.

• HH, MM, and SS are 2-digit representations of hours, minutes, and seconds,
respectively.

For example, a valid cookie expiration date is

expires=Wednesday, 09-Nov-99 23:12:40 GMT

The cookie date format is the same as the date returned by toGMTString , with
the following exceptions:

• Dashes are added between the day, month, and year.

• The year is a 2-digit value for cookies.

Property of document

Implemented in Navigator 2.0
Chapter 5, Document 229

document
Examples The following function uses the cookie property to record a reminder for users
of an application. The cookie expiration date is set to one day after the date of
the reminder.

function RecordReminder(time, expression) {
// Record a cookie of the form "@<T>=<E>" to map
// from <T> in milliseconds since the epoch,
// returned by Date.getTime(), onto an encoded expression,
// <E> (encoded to contain no white space, semicolon,
// or comma characters)
document.cookie = "@" + time + "=" + expression + ";"
// set the cookie expiration time to one day
// beyond the reminder time
document.cookie += "expires=" + cookieDate(time + 24*60*60*1000)
// cookieDate is a function that formats the date
//according to the cookie spec

}

See also Hidden

domain

Specifies the domain name of the server that served a document.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description Navigator 3.0: The domain property lets scripts on multiple servers share
properties when data tainting is not enabled. With tainting disabled, a script
running in one window can read properties of another window only if both
windows come from the same Web server. But large Web sites with multiple
servers might need to share properties among servers. For example, a script on
the host www.royalairways.com might need to share properties with a script
on the host search.royalairways.com .

If scripts on two different servers change their domain property so that both
scripts have the same domain name, both scripts can share properties. For
example, a script loaded from search.royalairways.com could set its
domain property to "royalairways.com" . A script from
www.royalairways.com running in another window could also set its domain

Property of document

Implemented in Navigator 3.0
230 JavaScript Reference

document
property to "royalairways.com" . Then, since both scripts have the domain
"royalairways.com" , these two scripts can share properties, even though
they did not originate from the same server.

You can change domain only in a restricted way. Initially, domain contains the
hostname of the Web server from which the document was loaded. You can set
domain only to a domain suffix of itself. For example, a script from
search.royalairways.com can’t set its domain property to
"search.royalairways" . And a script from IWantYourMoney.com cannot set
its domain to "royalairways.com" .

Once you change the domain property, you cannot change it back to its
original value. For example, if you change domain from
"search.royalairways.com" to "royalairways.com" , you cannot reset it to
"search.royalairways.com" .

Examples The following statement changes the domain property to
"braveNewWorld.com" . This statement is valid only if "braveNewWorld.com"
is a suffix of the current domain, such as "www.braveNewWorld.com" .

document.domain="braveNewWorld.com"

embeds

An array containing an entry for each object embedded in the document.

Description You can refer to embedded objects (created with the EMBED tag) in your code
by using the embeds array. This array contains an entry for each EMBED tag in a
document in source order. For example, if a document contains three
embedded objects whose NAME attributes are e1 , e2, and e3 , you can refer to
the objects either as:

document.embeds["e1"]
document.embeds["e2"]
document.embeds["e3"]

or as:

Property of document

Read-only

Implemented in Navigator 3.0
Chapter 5, Document 231

document
document.embeds[0]
document.embeds[1]
document.embeds[2]

Elements in the embeds array may have public callable functions, if they refer
to a plug-in that uses LiveConnect. See the JavaScript Guide.

Use the elements in the embeds array to interact with the plug-in that is
displaying the embedded object. If a plug-in is not Java-enabled, you cannot do
anything with its element in the embeds array. The fields and methods of the
elements in the embeds array vary from plug-in to plug-in; see the
documentation supplied by the plug-in manufacturer.

When you use the EMBED tag to generate output from a plug-in application, you
are not creating a Plugin object.

Examples The following code includes an audio plug-in in a document.

<EMBED SRC="train.au" HEIGHT=50 WIDTH=250>

See also Plugin

fgColor

A string specifying the color of the document (foreground) text.

Description The fgColor property is expressed as a hexadecimal RGB triplet or as one of
the string literals listed in Appendix B, “Color Values,” in the JavaScript Guide.
This property is the JavaScript reflection of the TEXT attribute of the BODY tag.
The default value of this property is set by the user with the preferences dialog
box You cannot set this property after the HTML source has been through
layout.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA ,
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

You can override the value set in the fgColor property in either of the
following ways:

• Setting the COLOR attribute of the FONT tag.

Property of document

Implemented in Navigator 2.0
232 JavaScript Reference

document
• Using the fontcolor method.

formName

The document object contains a separate property for each form in the
document. The name of this property is the value of its NAME attribute. See
Form for information on Form objects. You cannot add new forms to the
document by creating new properties, but you can modify the form by
modifying this object.

forms

An array containing an entry for each form in the document.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description You can refer to the forms in your code by using the forms array (you can also
use the form name). This array contains an entry for each Form object (FORM
tag) in a document; these entries are in source order. For example, if a
document contains three forms whose NAME attributes are form1 , form2 , and
form3 , you can refer to the objects in the forms array either as:

document.forms[" form1 "]
document.forms[" form2 "]
document.forms[" form3 "]

or as:

document.forms[0]
document.forms[1]
document.forms[2]

Additionally, the document object has a separate property for each named
form, so you could refer to these forms also as:

Property of document

Implemented in Navigator 3.0

Property of document

Read-only

Implemented in Navigator 3.0
Chapter 5, Document 233

document
document. form1
document. form2
document. form3

For example, you would refer to a Text object named quantity in the second
form as document.forms[1].quantity . You would refer to the value
property of this Text object as document.forms[1].quantity.value .

The value of each element in the forms array is <object nameAttribute> ,
where nameAttribute is the NAME attribute of the form.

images

An array containing an entry for each image in the document.

You can refer to the images in a document by using the images array. This
array contains an entry for each Image object (IMG tag) in a document; the
entries are in source order. Images created with the Image constructor are not
included in the images array. For example, if a document contains three
images whose NAME attributes are im1 , im2 , and im3 , you can refer to the
objects in the images array either as:

document.images[" im1 "]
document.images[" im2 "]
document.images[" im3 "]

or as:

document.images[0]
document.images[1]
document.images[2]

lastModified

A string representing the date that a document was last modified.

Property of document

Read-only

Implemented in Navigator 3.0

Property of document

Read-only

Implemented in Navigator 2.0
234 JavaScript Reference

document
Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The lastModified property is derived from the HTTP header data sent by the
web server. Servers generally obtain this date by examining the file’s
modification date.

The last modified date is not a required portion of the header, and some servers
do not supply it. If the server does not return the last modified information,
JavaScript receives a 0, which it displays as January 1, 1970 GMT. The following
code checks the date returned by lastModified and prints out a value that
corresponds to unknown.

lastmod = document.lastModified // get string of last modified date
lastmoddate = Date.parse(lastmod)// convert modified string to date
if(lastmoddate == 0){// unknown date (or January 1, 1970 GMT)

document.writeln("Lastmodified: Unknown")
} else {
document.writeln("LastModified: " + lastmod)

}

Examples In the following example, the lastModified property is used in a SCRIPT tag
at the end of an HTML file to display the modification date of the page:

document.write("This page updated on " + document.lastModified)

layers

The layers property is an array containing an entry for each layer within the
document.

Description You can refer to the layers in your code by using the layers array. This array
contains an entry for each Layer object (LAYER or ILAYER tag) in a document;
these entries are in source order. For example, if a document contains three
layers whose NAME attributes are layer1 , layer2 , and layer3 , you can refer to
the objects in the layers array either as:

document.layers["layer1"]
document.layers["layer2"]
document.layers["layer3"]

or as:

Property of document

Implemented in Navigator 4.0
Chapter 5, Document 235

document
document.layers[0]
document.layers[1]
document.layers[2]

When accessed by integer index, array elements appear in z-order from back to
front, where 0 is the bottommost layer and higher layers are indexed by
consecutive integers. The index of a layer is not the same as its zIndex
property, as the latter does not necessarily enumerate layers with consecutive
integers. Adjacent layers can have the same zIndex property values.

These are valid ways of accessing layer objects:

document.layerName
document.layers[index]
document.layers["layerName"]
// example of using layers property to access nested layers:
document.layers["parentlayer"].layers["childlayer"]

Elements of a layers array are JavaScript objects that cannot be set by
assignment, though their properties can be set. For example, the statement

document.layers[0]="music"

is invalid (and ignored) because it attempts to alter the layers array. However,
the properties of the objects in the array readable and some are writable. For
example, the statement

document.layers["suspect1"].left = 100;

is valid. This sets the layer’s horizontal position to 100. The following example
sets the background color to blue for the layer bluehouse which is nested in
the layer houses .

document.layers["houses"].layers["bluehouse"].bgColor="blue";

linkColor

A string specifying the color of the document hyperlinks.

Property of document

Implemented in Navigator 2.0
236 JavaScript Reference

document
Description The linkColor property is expressed as a hexadecimal RGB triplet or as one
of the string literals listed in the JavaScript Guide. This property is the JavaScript
reflection of the LINK attribute of the BODY tag. The default value of this
property is set by the user with the preferences dialog box. You cannot set this
property after the HTML source has been through layout.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA ,
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

Examples The following example sets the color of document links to aqua using a string
literal:

document.linkColor="aqua"

The following example sets the color of document links to aqua using a
hexadecimal triplet:

document.linkColor="00FFFF"

See also document.alinkColor , document.bgColor , document.fgColor ,
document.vlinkColor

links

An array of objects corresponding to Area and Link objects in source order.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description You can refer to the Area and Link objects in your code by using the links
array. This array contains an entry for each Area (<AREA HREF="..."> tag)
and Link (tag) object in a document in source order. It also
contains links created with the link method. For example, if a document
contains three links, you can refer to them as:

document.links[0]
document.links[1]
document.links[2]

Property of document

Read-only

Implemented in Navigator 2.0
Chapter 5, Document 237

document
plugins

An array of objects corresponding to Plugin objects in source order.

You can refer to the Plugin objects in your code by using the plugins array.
This array contains an entry for each Plugin object in a document in source
order. For example, if a document contains three plugins, you can refer to them
as:

document.plugins[0]
document.plugins[1]
document.plugins[2]

referrer

Specifies the URL of the calling document when a user clicks a link.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description When a user navigates to a destination document by clicking a Link object on
a source document, the referrer property contains the URL of the source
document.

referrer is empty if the user typed a URL in the Location box, or used some
other means to get to the current URL. referrer is also empty if the server
does not provide environment variable information.

Examples In the following example, the getReferrer function is called from the
destination document. It returns the URL of the source document.

function getReferrer() {
return document.referrer

}

Property of document

Read-only

Implemented in Navigator 3.0

Property of document

Read-only

Implemented in Navigator 2.0
238 JavaScript Reference

document
title

A string representing the title of a document.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The title property is a reflection of the value specified between the TITLE
start and end tags. If a document does not have a title, the title property is
null.

Examples In the following example, the value of the title property is assigned to a
variable called docTitle :

var newWindow = window.open("http://home.netscape.com")
var docTitle = newWindow.document.title

URL

A string specifying the complete URL of the document.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description URL is a string-valued property containing the full URL of the document. It
usually matches what window.location.href is set to when you load the
document, but redirection may change location.href .

Examples The following example displays the URL of the current document:

document.write("The current URL is " + document.URL)

See also Location.href

Property of document

Read-only

Implemented in Navigator 2.0

Property of document

Read-only

Implemented in Navigator 2.0
Chapter 5, Document 239

document
vlinkColor

A string specifying the color of visited links.

Description The vlinkColor property is expressed as a hexadecimal RGB triplet or as one
of the string literals listed in the JavaScript Guide. This property is the JavaScript
reflection of the VLINK attribute of the BODY tag. The default value of this
property is set by the user with the preferences dialog box. You cannot set this
property after the HTML source has been through layout.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA ,
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

Examples The following example sets the color of visited links to aqua using a string
literal:

document.vlinkColor="aqua"

The following example sets the color of active links to aqua using a
hexadecimal triplet:

document.vlinkColor="00FFFF"

See also document.alinkColor , document.bgColor , document.fgColor ,
document.linkColor

Methods

captureEvents

Sets the document to capture all events of the specified type.

Syntax captureEvents(eventType)

Property of document

Implemented in Navigator 2.0

Method of document

Implemented in Navigator 4.0
240 JavaScript Reference

document
Parameters

Description When a window with frames wants to capture events in pages loaded from
different locations (servers), you need to use Window.captureEvents in a
signed script and precede it with Window.enableExternalCapture . For more
information and an example, see Window.enableExternalCapture .

captureEvents works in tandem with releaseEvents , routeEvent , and
handleEvent . For more information, see “Events in Navigator 4.0” on
page 482.

close

Closes an output stream and forces data sent to layout to display.

Syntax close()

Parameters None.

Description The close method closes a stream opened with the document.open method.
If the stream was opened to layout, the close method forces the content of the
stream to display. Font style tags, such as BIG and CENTER, automatically flush
a layout stream.

The close method also stops the “meteor shower” in the Netscape icon and
displays Document: Done in the status bar.

Examples The following function calls document.close to close a stream that was
opened with document.open . The document.close method forces the content
of the stream to display in the window.

function windowWriter1() {
var myString = "Hello, world!"
msgWindow.document.open()
msgWindow.document.write(myString + "<P>")
msgWindow.document.close()

}

eventType The type of event to be captured. The available event types are listed with
the event object.

Method of document

Implemented in Navigator 2.0
Chapter 5, Document 241

document
See also document.open , document.write , document.writeln

getSelection

Returns a string containing the text of the current selection.

Syntax getSelection()

Description This method works only on the current document.

Security You cannot determine selected areas in another window.

Examples If you have a form with the following code and you click on the button,
JavaScript displays an alert box containing the currently selected text from the
window containing the button:

<INPUT TYPE="BUTTON" NAME="getstring"
VALUE="Show highlighted text (if any)"
onClick="alert('You have selected:\n'+document.getSelection());">

handleEvent

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see “General Information about Events” on
page 481.

Method of document

Implemented in Navigator 4.0

Method of document

Implemented in Navigator 4.0

event The name of an event for which the specified object has an event handler.
242 JavaScript Reference

document
open

Opens a stream to collect the output of write or writeln methods.

Syntax open(mimeType, replace)

Parameters

Description Sample values for mimeType are:

• text/html specifies a document containing ASCII text with HTML
formatting.

• text/plain specifies a document containing plain ASCII text with end-of-
line characters to delimit displayed lines.

• image/gif specifies a document with encoded bytes constituting a GIF
header and pixel data.

• image/jpeg specifies a document with encoded bytes constituting a JPEG
header and pixel data.

• image/x-bitmap specifies a document with encoded bytes constituting a
bitmap header and pixel data.

• plugIn loads the specified plug-in and uses it as the destination for write
and writeln methods. For example, "x-world/vrml" loads the VR Scout
VRML plug-in from Chaco Communications, and "application/x-

director" loads the Macromedia Shockwave plug-in. Plug-in MIME types
are only valid if the user has installed the required plug-in software.

Method of document

Implemented in Navigator 2.0
Navigator 3.0: added "replace" parameter; document.open()
or document.open("text/html") clears the current document
if it has finished loading

mimeType (Optional) A string specifying the type of document to which you
are writing. If you do not specify mimeType , text/html is the
default.

replace (Optional) The string "replace" . If you supply this parameter,
mimeType must be "text/html" . Causes the new document to
reuse the history entry that the previous document used.
Chapter 5, Document 243

document
The open method opens a stream to collect the output of write or writeln
methods. If the mimeType is text or image , the stream is opened to layout;
otherwise, the stream is opened to a plug-in. If a document exists in the target
window, the open method clears it.

End the stream by using the document.close method. The close method
causes text or images that were sent to layout to display. After using
document.close , call document.open again when you want to begin another
output stream.

In Navigator 3.0 and later, document.open or document.open("text/html")
clears the current document if it has finished loading. This is because this type
of open call writes a default <BASE HREF=> tag so you can generate relative
URLs based on the generating script’s document base.

The "replace" keyword causes the new document to reuse the history entry
that the previous document used. When you specify "replace" while opening
a document, the target window’s history length is not incremented even after
you write and close.

"replace" is typically used on a window that has a blank document or an
"about:blank" URL. After "replace" is specified, the write method typically
generates HTML for the window, replacing the history entry for the blank URL.
Take care when using generated HTML on a window with a blank URL. If you
do not specify "replace" , the generated HTML has its own history entry, and
the user can press the Back button and back up until the frame is empty.

After document.open("text/html","replace") executes,
history.current for the target window is the URL of document that executed
document.open .

Examples Example 1. The following function calls document.open to open a stream
before issuing a write method:

function windowWriter1() {
var myString = "Hello, world!"
msgWindow.document.open()
msgWindow.document.write("<P>" + myString)
msgWindow.document.close()

}

Example 2. The following function calls document.open with the "replace"
keyword to open a stream before issuing write methods. The HTML code in
the write methods is written to msgWindow, replacing the current history entry.
The history length of msgWindow is not incremented.
244 JavaScript Reference

document
function windowWriter2() {
var myString = "Hello, world!"
msgWindow.document.open("text/html","replace")
msgWindow.document.write("<P>" + myString)
msgWindow.document.write("<P>history.length is " +

msgWindow.history.length)
msgWindow.document.close()

}

The following code creates the msgWindow window and calls the function:

msgWindow=window.open('','',
'toolbar=yes,scrollbars=yes,width=400,height=300')

windowWriter2()

Example 3. In the following example, the probePlugIn function determines
whether a user has the Shockwave plug-in installed:

function probePlugIn(mimeType) {
var havePlugIn = false
var tiny = window.open("", "teensy", "width=1,height=1")
if (tiny != null) {

if (tiny.document.open(mimeType) != null)
havePlugIn = true

tiny.close()
}
return havePlugIn

}

var haveShockwavePlugIn = probePlugIn("application/x-director")

See also document.close , document.write , document.writeln , Location.reload ,
Location.replace

releaseEvents

Sets the document to release captured events of the specified type, sending the
event to objects further along the event hierarchy.

Note If the original target of the event is a window, the window receives the event
even if it is set to release that type of event.

Syntax releaseEvents(eventType)

Method of document

Implemented in Navigator 4.0
Chapter 5, Document 245

document
Parameters

Description releaseEvents works in tandem with captureEvents , routeEvent , and
handleEvent . For more information, see “Events in Navigator 4.0” on
page 482.

routeEvent

Passes a captured event along the normal event hierarchy.

Syntax routeEvent(event)

Parameters

Description If a subobject (document or layer) is also capturing the event, the event is sent
to that object. Otherwise, it is sent to its original target.

routeEvent works in tandem with captureEvents , releaseEvents , and
handleEvent . For more information, see “Events in Navigator 4.0” on
page 482.

write

Writes one or more HTML expressions to a document in the specified window.

Syntax document.write(expr1, ...,expr N)

eventType Type of event to be captured.

Method of document

Implemented in Navigator 4.0

event Name of the event to be routed.

Method of document

Implemented in Navigator 2.0
Navigator 3.0: users can print and save generated HTML using the
commands on the File menu
246 JavaScript Reference

document
Parameters

Description The write method displays any number of expressions in the document
window. You can specify any JavaScript expression with the write method,
including numeric, string, or logical expressions.

The write method is the same as the writeln method, except the write
method does not append a newline character to the end of the output.

Use the write method within any SCRIPT tag or within an event handler.
Event handlers execute after the original document closes, so the write
method implicitly opens a new document of mimeType text/html if you do
not explicitly issue a document.open method in the event handler.

You can use the write method to generate HTML and JavaScript code.
However, the HTML parser reads the generated code as it is being written, so
you might have to escape some characters. For example, the following write
method generates a comment and writes it to window2 :

window2=window.open('','window2')
beginComment="\<!--"
endComment="--\>"
window2.document.write(beginComment)
window2.document.write(" This some text inside a comment. ")
window2.document.write(endComment)

Printing, saving, and viewing generated HTML

In Navigator 3.0 and later, users can print and save generated HTML using the
commands on the File menu.

If you choose Document Source or Frame Source from the View menu, the web
browser displays the content of the HTML file with the generated HTML. (This
is what would be displayed using a wysiwyg: URL.)

If you instead want to view the HTML source showing the scripts which
generate HTML (with the document.write and document.writeln methods),
do not use the Document Source or Frame Source menu item. In this situation,
use the view-source: protocol.

For example, assume the file file://c|/test.html contains this text:

expr1, ... expr N Any JavaScript expressions.
Chapter 5, Document 247

document
<HTML>
<BODY>
Hello,
<SCRIPT>document.write(" there.")</SCRIPT>
</BODY>
</HTML>

If you load this URL into the web browser, it displays the following:

Hello, there.

If you choose View Document Source, the browser displays:

<HTML>
<BODY>
Hello,

there.
</BODY>
</HTML>

If you load view-source:file://c|/test.html , the browser displays:

<HTML>
<BODY>
Hello,
<SCRIPT>document.write(" there.")</SCRIPT>
</BODY>
</HTML>

For information on specifying the view-source: protocol in the location
object, see the Location object.

Examples In the following example, the write method takes several arguments, including
strings, a numeric, and a variable:

var mystery = "world"
// Displays Hello world testing 123
msgWindow.document.write("Hello ", mystery, " testing ", 123)

In the following example, the write method takes two arguments. The first
argument is an assignment expression, and the second argument is a string
literal.

//Displays Hello world...
msgWindow. document.write (mystr = "Hello ", "world...")

In the following example, the write method takes a single argument that is a
conditional expression. If the value of the variable age is less than 18, the
method displays “Minor.” If the value of age is greater than or equal to 18, the
method displays “Adult.”
248 JavaScript Reference

document
msgWindow.document.write(status = (age >= 18) ? "Adult" : "Minor")

See also document.close , document.open , document.writeln

writeln

Writes one or more HTML expressions to a document in the specified window
and follows them with a newline character.

Syntax writeln(expr1, ... expr N)

Parameters

Description The writeln method displays any number of expressions in a document
window. You can specify any JavaScript expression, including numeric, string,
or logical expressions.

The writeln method is the same as the write method, except the writeln
method appends a newline character to the end of the output. HTML ignores
the newline character, except within certain tags such as the PRE tag.

Use the writeln method within any SCRIPT tag or within an event handler.
Event handlers execute after the original document closes, so the writeln
method will implicitly open a new document of mimeType text/html if you
do not explicitly issue a document.open method in the event handler.

Examples All the examples used for the write method are also valid with the writeln
method.

See also document.close , document.open , document.write

Method of document

Implemented in Navigator 2.0
Navigator 3.0: users can print and save generated HTML using the
commands on the File menu

expr1, ... expr N Any JavaScript expressions.
Chapter 5, Document 249

Link
Link
A piece of text, an image, or an area of an image identified as a hypertext link.
When the user clicks the link text, image, or area, the link hypertext reference
is loaded into its target window. Area objects are a type of Link object.

Created by By using the HTML A or AREA tag or by a call to the String.link method. The
JavaScript runtime engine creates a Link object corresponding to each A and
AREA tag in your document that supplies the HREF attribute. It puts these
objects as an array in the document.links property. You access a Link object
by indexing this array.

To define a link with the String.link method:

theString.link(hrefAttribute)

where:

To define a link with the A or MAP tag, use standard HTML syntax with the
addition of JavaScript event handlers. If you’re going to use the onMouseOut or
onMouseOver event handlers, you must supply a value for the HREF attribute.

Event handlers Area objects have the following event handlers:
• onDblClick

• onMouseOut

• onMouseOver

Link objects have the following event handlers:
• onClick

• onDblClick

• onKeyDown

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added onMouseOut event handler; added Area
objects; links array contains areas created with <AREA
HREF="...">
Navigator 4.0: added handleEvent method

theString A String object.

hrefAttribute Any string that specifies the HREF attribute of the A tag; it should
be a valid URL (relative or absolute).
250 JavaScript Reference

Link
• onKeyPress

• onKeyUp

• onMouseDown

• onMouseOut

• onMouseUp

• onMouseOver

Description Each Link object is a location object and has the same properties as a
location object.

If a Link object is also an Anchor object, the object has entries in both the
anchors and links arrays.

When a user clicks a Link object and navigates to the destination document
(specified by HREF="locationOrURL"), the destination document’s referrer
property contains the URL of the source document. Evaluate the referrer
property from the destination document.

You can use a Link object to execute a JavaScript function rather than link to a
hypertext reference by specifying the javascript: URL protocol for the link’s
HREF attribute. You might want to do this if the link surrounds an Image object
and you want to execute JavaScript code when the image is clicked. Or you
might want to use a link instead of a button to execute JavaScript code.

For example, when a user clicks the following links, the slower and faster
functions execute:

Slower
Faster

You can use a Link object to do nothing rather than link to a hypertext
reference by specifying the javascript:void(0) URL protocol for the link’s
HREF attribute. You might want to do this if the link surrounds an Image object
and you want to use the link’s event handlers with the image. When a user
clicks the following link or image, nothing happens:

Click here to do nothing

Chapter 5, Document 251

Link
Property
Summary

Method Summary

Examples Example 1. The following example creates a hypertext link to an anchor
named javascript_intro :

Introduction to JavaScript

Example 2. The following example creates a hypertext link to an anchor
named numbers in the file doc3.html in the window window2 . If window2
does not exist, it is created.

Numbers

Example 3. The following example takes the user back x entries in the history
list:

Click here

Example 4. The following example creates a hypertext link to a URL. The user
can use the set of radio buttons to choose between three URLs. The link’s
onClick event handler sets the URL (the link’s href property) based on the

Property Description

hash Specifies an anchor name in the URL.

host Specifies the host and domain name, or IP address, of a network
host.

hostname Specifies the host:port portion of the URL.

href Specifies the entire URL.

pathname Specifies the URL-path portion of the URL.

port Specifies the communications port that the server uses.

protocol Specifies the beginning of the URL, including the colon.

search Specifies a query string.

target Reflects the TARGET attribute.

text A string containing the content of the corresponding A tag.

Method Description

handleEvent Invokes the handler for the specified event.
252 JavaScript Reference

Link
selected radio button. The link also has an onMouseOver event handler that
changes the window’s status property. As the example shows, you must
return true to set the window.status property in the onMouseOver event
handler.

<SCRIPT>
var destHREF="http://home.netscape.com/"
</SCRIPT>
<FORM NAME="form1">
Choose a destination from the following list, then click "Click me" below.

<INPUT TYPE="radio" NAME="destination" VALUE="netscape"

onClick="destHREF='http://home.netscape.com/'"> Netscape home page

<INPUT TYPE="radio" NAME="destination" VALUE="sun"

onClick="destHREF='http://www.sun.com/'"> Sun home page

<INPUT TYPE="radio" NAME="destination" VALUE="rfc1867"

onClick="destHREF='http://www.ics.uci.edu/pub/ietf/html/rfc1867.txt'"> RFC 1867
<P><A HREF=""

onMouseOver="window.status='Click this if you dare!'; return true"
onClick="this.href=destHREF">
Click me

</FORM>

Example 5: links array. In the following example, the linkGetter function
uses the links array to display the value of each link in the current document.
The example also defines several links and a button for running linkGetter.

function linkGetter() {
msgWindow=window.open("","msg","width=400,height=400")
msgWindow.document.write("links.length is " +

document.links.length + "
")
for (var i = 0; i < document.links.length; i++) {

msgWindow.document.write(document.links[i] + "
")
}

}

Netscape Home Page
China Adoptions
Bad Dog Chronicles
Lab Rescue
<P>
<INPUT TYPE="button" VALUE="Display links"

onClick="linkGetter()">

Example 6: Refer to Area object with links array. The following code refers
to the href property of the first Area object shown in Example 1.

document.links[0].href
Chapter 5, Document 253

Link
Example 7: Area object with onMouseOver and onMouseOut event
handlers. The following example displays an image, globe.gif . The image
uses an image map that defines areas for the top half and the bottom half of the
image. The onMouseOver and onMouseOut event handlers display different
status bar messages depending on whether the mouse passes over or leaves the
top half or bottom half of the image. The HREF attribute is required when using
the onMouseOver and onMouseOut event handlers, but in this example the
image does not need a hypertext link, so the HREF attribute executes
javascript:void(0) , which does nothing.

<MAP NAME="worldMap">
<AREA NAME="topWorld" COORDS="0,0,50,25" HREF="javascript:void(0)"

onMouseOver="self.status='You are on top of the world';return true"
onMouseOut="self.status='You have left the top of the world';return true">

<AREA NAME="bottomWorld" COORDS="0,25,50,50" HREF="javascript:void(0)"
onMouseOver="self.status='You are on the bottom of the world';return true"
onMouseOut="self.status='You have left the bottom of the world';return true">

</MAP>

Example 8: Simulate an Area object’s onClick using the HREF attribute.
The following example uses an Area object’s HREF attribute to execute a
JavaScript function. The image displayed, colors.gif , shows two sample
colors. The top half of the image is the color antiquewhite, and the bottom half
is white. When the user clicks the top or bottom half of the image, the function
setBGColor changes the document’s background color to the color shown in
the image.

<SCRIPT>
function setBGColor(theColor) {

document.bgColor=theColor
}
</SCRIPT>
Click the color you want for this document's background color
<MAP NAME="colorMap">

<AREA NAME="topColor" COORDS="0,0,50,25" HREF="javascript:setBGColor('antiquewhite')">
<AREA NAME="bottomColor" COORDS="0,25,50,50" HREF="javascript:setBGColor('white')">

</MAP>

See also Anchor , Image , link
254 JavaScript Reference

Link
Properties

hash

A string beginning with a hash mark (#) that specifies an anchor name in the
URL.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The hash property specifies a portion of the URL. This property applies to
HTTP URLs only.

Be careful using this property. Assume document.links[0] contains:

http://royalairways.com/fish.htm#angel

Then document.links[0].hash returns #angel . Assume you have this code:

hash = document.links[0].hash;
document.links[0].hash = hash;

Now, document.links[0].hash returns ##angel .

This behavior may change in a future release.

You can set the hash property at any time, although it is safer to set the href
property to change a location. If the hash that you specify cannot be found in
the current location, you get an error.

Setting the hash property navigates to the named anchor without reloading the
document. This differs from the way a document is loaded when other link
properties are set.

See RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the hash.

See also Link.host , Link.hostname , Link.href , Link.pathname , Link.port ,
Link.protocol , Link.search

Property of Link

Implemented in Navigator 2.0
Chapter 5, Document 255

Link
host

A string specifying the server name, subdomain, and domain name.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The host property specifies a portion of a URL. The host property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon. When
the port property is null, the host property is the same as the hostname
property.

You can set the host property at any time, although it is safer to set the href
property to change a location. If the host that you specify cannot be found in
the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the hostname and port.

See also Link.hash , Link.hostname , Link.href , Link.pathname , Link.port ,
Link.protocol , Link.search

hostname

A string containing the full hostname of the server, including the server name,
subdomain, domain, and port number.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The hostname property specifies a portion of a URL. The hostname property is
the concatenation of the host and port properties, separated by a colon.
When the port property is 80 (the default), the host property is the same as
the hostname property.

Property of Link

Implemented in Navigator 2.0

Property of Link

Implemented in Navigator 2.0
256 JavaScript Reference

Link
You can set the hostname property at any time, although it is safer to set the
href property to change a location. If the hostname that you specify cannot be
found in the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the hostname.

See also Link.host , Link.hash , Link.href , Link.pathname , Link.port ,
Link.protocol , Link.search

href

A string specifying the entire URL.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The href property specifies the entire URL. Other link object properties are
substrings of the href property.

You can set the href property at any time.

See RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the URL.

See also Link.hash , Link.host , Link.hostname , Link.pathname , Link.port ,
Link.protocol , Link.search

pathname

A string specifying the URL-path portion of the URL.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Property of Link

Implemented in Navigator 2.0

Property of Link

Implemented in Navigator 2.0
Chapter 5, Document 257

Link
Description The pathname property specifies a portion of the URL. The pathname supplies
the details of how the specified resource can be accessed.

You can set the pathname property at any time, although it is safer to set the
href property to change a location. If the pathname that you specify cannot be
found in the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the pathname.

See also Link.host , Link.hostname , Link.hash , Link.href , Link.port ,
Link.protocol , Link.search

port

A string specifying the communications port that the server uses.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The port property specifies a portion of the URL. The port property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon. When
the port property is 80 (the default), the host property is the same as the
hostname property.

You can set the port property at any time, although it is safer to set the href
property to change a location. If the port that you specify cannot be found in
the current location, you will get an error. If the port property is not specified,
it defaults to 80 on the server.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the port.

See also Link.host , Link.hostname , Link.hash , Link.href , Link.pathname ,
Link.protocol , Link.search

Property of Link

Implemented in Navigator 2.0
258 JavaScript Reference

Link
protocol

A string specifying the beginning of the URL, up to and including the first
colon.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The protocol property specifies a portion of the URL. The protocol indicates
the access method of the URL. For example, the value "http:" specifies
HyperText Transfer Protocol, and the value "javascript:" specifies JavaScript
code.

You can set the protocol property at any time, although it is safer to set the
href property to change a location. If the protocol that you specify cannot be
found in the current location, you get an error.

The protocol property represents the scheme name of the URL. See Section
2.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the protocol.

See also Link.host , Link.hostname , Link.hash , Link.href , Link.pathname ,
Link.port , Link.search

search

A string beginning with a question mark that specifies any query information in
the URL.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The search property specifies a portion of the URL. This property applies to
http URLs only.

Property of Link

Implemented in Navigator 2.0

Property of Link

Implemented in Navigator 2.0
Chapter 5, Document 259

Link
The search property contains variable and value pairs; each pair is separated
by an ampersand. For example, two pairs in a search string could look like the
following:

?x=7&y=5

You can set the search property at any time, although it is safer to set the href
property to change a location. If the search that you specify cannot be found in
the current location, you get an error.

See Section 3.3 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the search.

See also Link.host , Link.hostname , Link.hash , Link.href , Link.pathname ,
Link.port , Link.protocol

target

A string specifying the name of the window that displays the content of a
clicked hypertext link.

Description The target property initially reflects the TARGET attribute of the A or AREA
tags; however, setting target overrides this attribute.

You can set target using a string, if the string represents a window name. The
target property cannot be assigned the value of a JavaScript expression or
variable.

You can set the target property at any time.

Examples The following example specifies that responses to the musicInfo form are
displayed in the msgWindow window:

document.musicInfo.target="msgWindow"

See also Form

Property of Link

Implemented in Navigator 2.0
260 JavaScript Reference

Area
text

A string containing the content of the corresponding A tag.

Methods

handleEvent

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see “General Information about Events” on
page 481.

Area
Defines an area of an image as an image map. When the user clicks the area,
the area’s hypertext reference is loaded into its target window. Area objects are
a type of Link object.

For information on Area objects, see Link .

Property of Link

Implemented in Navigator 4.0

Method of Link

Implemented in Navigator 4.0

event The name of an event for which the specified object has an event handler.

Client-side object

Implemented in Navigator 3.0:
Chapter 5, Document 261

Anchor
Anchor
A place in a document that is the target of a hypertext link.

Created by Using the HTML A tag or calling the String.anchor method. The JavaScript
runtime engine creates an Anchor object corresponding to each A tag in your
document that supplies the NAME attribute. It puts these objects in an array in
the document.anchors property. You access an Anchor object by indexing
this array.

To define an anchor with the String.anchor method:

theString.anchor(nameAttribute)

where:

To define an anchor with the A tag, use standard HTML syntax. If you specify
the NAME attribute, you can use the value of that attribute to index into the
anchors array.

Description If an Anchor object is also a Link object, the object has entries in both the
anchors and links arrays.

Properties None.

Methods None.

Examples Example 1: An anchor. The following example defines an anchor for the text
“Welcome to JavaScript”:

<H2>Welcome to JavaScript</H2>

If the preceding anchor is in a file called intro.html , a link in another file
could define a jump to the anchor as follows:

Introduction

Client-side object

Implemented in Navigator 2.0

theString A String object.

nameAttribute A string.
262 JavaScript Reference

Anchor
Example 2: anchors array. The following example opens two windows. The
first window contains a series of buttons that set location.hash in the second
window to a specific anchor. The second window defines four anchors named
“0,” “1,” “2,” and “3.” (The anchor names in the document are therefore 0, 1, 2,
... (document.anchors.length-1).) When a button is pressed in the first window,
the onClick event handler verifies that the anchor exists before setting
window2.location.hash to the specified anchor name.

link1.html , which defines the first window and its buttons, contains the
following code:

<HTML>
<HEAD>
<TITLE>Links and Anchors: Window 1</TITLE>
</HEAD>
<BODY>
<SCRIPT>
window2=open("link2.html","secondLinkWindow",

"scrollbars=yes,width=250, height=400")
function linkToWindow(num) {

if (window2.document.anchors.length > num)
window2.location.hash=num

else
alert("Anchor does not exist!")

}
</SCRIPT>
Links and Anchors
<FORM>
<P>Click a button to display that anchor in window #2
<P><INPUT TYPE="button" VALUE="0" NAME="link0_button"

onClick="linkToWindow(this.value)">
<INPUT TYPE="button" VALUE="1" NAME="link0_button"

onClick="linkToWindow(this.value)">
<INPUT TYPE="button" VALUE="2" NAME="link0_button"

onClick="linkToWindow(this.value)">
<INPUT TYPE="button" VALUE="3" NAME="link0_button"

onClick="linkToWindow(this.value)">
<INPUT TYPE="button" VALUE="4" NAME="link0_button"

onClick="linkToWindow(this.value)">
</FORM>
</BODY>
</HTML>

link2.html , which contains the anchors, contains the following code:

<HTML>
<HEAD>
<TITLE>Links and Anchors: Window 2</TITLE>
</HEAD>
Chapter 5, Document 263

Image
<BODY>
Some numbers (Anchor 0)
one
two
three
four

<P>Some colors (Anchor 1)
red
orange
yellow
green

<P>Some music types (Anchor 2)
R&B
Jazz
Soul
Reggae
Rock

<P>Some countries (Anchor 3)
Afghanistan
Brazil
Canada
Finland
India
</BODY>
</HTML>

See also Link

Image
An image on an HTML form.

Created by The Image constructor or the IMG tag.

The JavaScript runtime engine creates an Image object corresponding to each
IMG tag in your document. It puts these objects in an array in the
document.images property. You access an Image object by indexing this
array.

Client-side object

Implemented in Navigator 3.0
Navigator 4.0: added handleEvent method
264 JavaScript Reference

Image
To define an image with the IMG tag, use standard HTML syntax with the
addition of JavaScript event handlers. If specify a value for the NAME attribute,
you can use that name when indexing the images array.

To define an image with its constructor, use the following syntax:

new Image(width, height)

Parameters

Event handlers • onAbort

• onError

• onKeyDown

• onKeyPress

• onKeyUp

• onLoad

To define an event handler for an Image object created with the Image
constructor, set the appropriate property of the object. For example, if you have
an Image object named imageName and you want to set one of its event
handlers to a function whose name is handlerFunction , use one of the
following statements:

imageName.onabort = handlerFunction
imageName.onerror = handlerFunction
imageName.onkeydown = handlerFunction
imageName.onkeypress = handlerFunction
imageName.onkeyup = handlerFunction
imageName.onload = handlerFunction

Image objects do not have onClick , onMouseOut , and onMouseOver event
handlers. However, if you define an Area object for the image or place the IMG
tag within a Link object, you can use the Area or Link object’s event handlers.
See Link .

Description The position and size of an image in a document are set when the document is
displayed in the web browser and cannot be changed using JavaScript (the
width and height properties are read-only for these objects). You can change
which image is displayed by setting the src and lowsrc properties. (See the
descriptions of Image.src and Image.lowsrc .)

width (Optional) The image width, in pixels.

height (Optional) The image height, in pixels.
Chapter 5, Document 265

Image
You can use JavaScript to create an animation with an Image object by
repeatedly setting the src property, as shown in Example 4 below. JavaScript
animation is slower than GIF animation, because with GIF animation the entire
animation is in one file; with JavaScript animation, each frame is in a separate
file, and each file must be loaded across the network (host contacted and data
transferred).

The primary use for an Image object created with the Image constructor is to
load an image from the network (and decode it) before it is actually needed for
display. Then when you need to display the image within an existing image
cell, you can set the src property of the displayed image to the same value as
that used for the previously fetched image, as follows.

myImage = new Image()
myImage.src = "seaotter.gif"
...
document.images[0].src = myImage.src

The resulting image will be obtained from cache, rather than loaded over the
network, assuming that sufficient time has elapsed to load and decode the
entire image. You can use this technique to create smooth animations, or you
could display one of several images based on form input.

Property
Summary

Property Description

border Reflects the BORDER attribute.

complete Boolean value indicating whether the web browser has
completed its attempt to load the image.

height Reflects the HEIGHT attribute.

hspace Reflects the HSPACE attribute.

lowsrc Reflects the LOWSRC attribute.

name Reflects the NAME attribute.

prototype Allows the addition of properties to an Image object.

src Reflects the SRC attribute.

vspace Reflects the VSPACE attribute.

width Reflects the WIDTH attribute.
266 JavaScript Reference

Image
Method Summary

Examples Example 1: Create an image with the IMG tag. The following code defines
an image using the IMG tag:

The following code refers to the image:

document.aircraft.src='f15e.gif'

When you refer to an image by its name, you must include the form name if the
image is on a form. The following code refers to the image if it is on a form:

document.myForm.aircraft.src='f15e.gif'

Example 2: Create an image with the Image constructor. The following
example creates an Image object, myImage , that is 70 pixels wide and 50 pixels
high. If the source URL, seaotter.gif , does not have dimensions of 70x50
pixels, it is scaled to that size.

myImage = new Image(70, 50)
myImage.src = "seaotter.gif"

If you omit the width and height arguments from the Image constructor,
myImage is created with dimensions equal to that of the image named in the
source URL.

myImage = new Image()
myImage.src = "seaotter.gif"

Example 3: Display an image based on form input. In the following
example, the user selects which image is displayed. The user orders a shirt by
filling out a form. The image displayed depends on the shirt color and size that
the user chooses. All possible image choices are preloaded to speed response
time. When the user clicks the button to order the shirt, the allShirts
function displays the images of all the shirts.

<SCRIPT>
shirts = new Array()
shirts[0] = "R-S"
shirts[1] = "R-M"
shirts[2] = "R-L"
shirts[3] = "W-S"

Method Description

handleEvent Invokes the handler for the specified event.
Chapter 5, Document 267

Image
shirts[4] = "W-M"
shirts[5] = "W-L"
shirts[6] = "B-S"
shirts[7] = "B-M"
shirts[8] = "B-L"

doneThis = 0
shirtImg = new Array()

// Preload shirt images
for(idx=0; idx < 9; idx++) {

shirtImg[idx] = new Image()
shirtImg[idx].src = "shirt-" + shirts[idx] + ".gif"

}

function changeShirt(form)
{

shirtColor = form.color.options[form.color.selectedIndex].text
shirtSize = form.size.options[form.size.selectedIndex].text

newSrc = "shirt-" + shirtColor.charAt(0) + "-" + shirtSize.charAt(0)
+ ".gif"

document.shirt.src = newSrc
}

function allShirts()
{

document.shirt.src = shirtImg[doneThis].src
doneThis++
if(doneThis != 9)setTimeout("allShirts()", 500)
else doneThis = 0

return
}

</SCRIPT>

Netscape Polo Shirts!

<TABLE CELLSPACING=20 BORDER=0>
<TR>
<TD></TD>

<TD>
<FORM>
Color
<SELECT SIZE=3 NAME="color" onChange="changeShirt(this.form)">
<OPTION> Red
<OPTION SELECTED> White
<OPTION> Blue
</SELECT>

<P>
Size
<SELECT SIZE=3 NAME="size" onChange="changeShirt(this.form)">
268 JavaScript Reference

Image
<OPTION> Small
<OPTION> Medium
<OPTION SELECTED> Large
</SELECT>

<P><INPUT type="button" name="buy" value="Buy This Shirt!"
onClick="allShirts()">

</FORM>

</TD>
</TR>
</TABLE>

Example 4: JavaScript animation. The following example uses JavaScript to
create an animation with an Image object by repeatedly changing the value the
src property. The script begins by preloading the 10 images that make up the
animation (image1.gif , image2.gif , image3.gif , and so on). When the
Image object is placed on the document with the IMG tag, image1.gif is
displayed and the onLoad event handler starts the animation by calling the
animate function. Notice that the animate function does not call itself after
changing the src property of the Image object. This is because when the src
property changes, the image’s onLoad event handler is triggered and the
animate function is called.

<SCRIPT>
delay = 100
imageNum = 1

// Preload animation images
theImages = new Array()
for(i = 1; i < 11; i++) {

theImages[i] = new Image()
theImages[i].src = "image" + i + ".gif"

}

function animate() {
document.animation.src = theImages[imageNum].src
imageNum++
if(imageNum > 10) {

imageNum = 1
}

}

function slower() {
delay+=10
if(delay > 4000) delay = 4000

}

function faster() {
delay-=10
if(delay < 0) delay = 0
Chapter 5, Document 269

Image
}
</SCRIPT>

<BODY BGCOLOR="white">

<IMG NAME="animation" SRC="image1.gif" ALT="[Animation]"
onLoad="setTimeout('animate()', delay)">

<FORM>
<INPUT TYPE="button" Value="Slower" onClick="slower()">
<INPUT TYPE="button" Value="Faster" onClick="faster()">

</FORM>
</BODY>

See also the examples for the onAbort , onError , and onLoad event handlers.

See also Link , onClick , onMouseOut , onMouseOver

Properties

border

A string specifying the width, in pixels, of an image border.

Description The border property reflects the BORDER attribute of the IMG tag. For images
created with the Image constructor, the value of the border property is 0.

Examples The following function displays the value of an image’s border property if the
value is not 0.

function checkBorder(theImage) {
if (theImage.border==0) {

alert('The image has no border!')
}
else alert('The image's border is ' + theImage.border)

}

See also Image.height , Image.hspace , Image.vspace , Image.width

Property of Image

Read-only

Implemented in Navigator 3.0:
270 JavaScript Reference

Image
complete

A boolean value that indicates whether the web browser has completed its
attempt to load an image.

Examples The following example displays an image and three radio buttons. The user can
click the radio buttons to choose which image is displayed. Clicking another
button lets the user see the current value of the complete property.

Choose an image:

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image1" CHECKED

onClick="document.images[0].src='f15e.gif'">F-15 Eagle

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image2"

onClick="document.images[0].src='f15e2.gif'">F-15 Eagle 2

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image3"

onClick="document.images[0].src='ah64.gif'">AH-64 Apache

<INPUT TYPE="button" VALUE="Is the image completely loaded?"
onClick="alert('The value of the complete property is '

+ document.images[0].complete)">

See also Image.lowsrc , Image.src

height

A string specifying the height of an image in pixels.

Description The height property reflects the HEIGHT attribute of the IMG tag. For images
created with the Image constructor, the value of the height property is the
actual, not the displayed, height of the image.

Examples The following function displays the values of an image’s height , width ,
hspace , and vspace properties.

Property of Image

Read-only

Implemented in Navigator 3.0:

Property of Image

Read-only

Implemented in Navigator 3.0:
Chapter 5, Document 271

Image
function showImageSize(theImage) {
alert('height=' + theImage.height+

'; width=' + theImage.width +
'; hspace=' + theImage.hspace +
'; vspace=' + theImage.vspace)

}

See also Image.border , Image.hspace , Image.vspace , Image.width

hspace

A string specifying a margin in pixels between the left and right edges of an
image and the surrounding text.

Description The hspace property reflects the HSPACE attribute of the IMG tag. For images
created with the Image constructor, the value of the hspace property is 0.

Examples See the examples for the height property.

See also Image.border , Image.height , Image.vspace , Image.width

lowsrc

A string specifying the URL of a low-resolution version of an image to be
displayed in a document.

Description The lowsrc property initially reflects the LOWSRC attribute of the IMG tag. The
web browser loads the smaller image specified by lowsrc and then replaces it
with the larger image specified by the src property. You can change the
lowsrc property at any time.

Examples See the examples for the src property.

See also Image.complete , Image.src

Property of Image

Read-only

Implemented in Navigator 3.0:

Property of Image

Implemented in Navigator 3.0:
272 JavaScript Reference

Image
name

A string specifying the name of an object.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description Represents the value of the NAME attribute. For images created with the Image
constructor, the value of the name property is null.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

In the following example, the first statement creates a window called
netscapeWin . The second statement displays the value "netscapeHomePage"
in the Alert dialog box, because "netscapeHomePage" is the value of the
windowName argument of netscapeWin .

netscapeWin=window.open("http://home.netscape.com","netscapeHomePage")
alert(netscapeWin.name)

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For more information, see
Function.prototype .

Property of Image

Read-only

Implemented in Navigator 3.0:

Property of Image

Implemented in Navigator 3.0
Chapter 5, Document 273

Image
src

A string specifying the URL of an image to be displayed in a document.

Description The src property initially reflects the SRC attribute of the IMG tag. Setting the
src property begins loading the new URL into the image area (and aborts the
transfer of any image data that is already loading into the same area).
Therefore, if you plan to alter the lowsrc property, you should do so before
setting the src property.

If the URL in the src property refers to an image that is not the same size as the
image cell it is loaded into, the source image is scaled to fit.

When you change the src property of a displayed image, the new image you
specify is displayed in the area defined for the original image. For example,
suppose an Image object originally displays the file beluga.gif :

If you set myImage.src='seaotter.gif' , the image seaotter.gif is scaled
to fit in the same space originally used by beluga.gif , even if seaotter.gif
is not the same size as beluga.gif .

You can change the src property at any time.

Examples The following example displays an image and three radio buttons. The user can
click the radio buttons to choose which image is displayed. Each image also
uses the lowsrc property to display a low-resolution image.

<SCRIPT>
function displayImage(lowRes,highRes) {

document.images[0].lowsrc=lowRes
document.images[0].src=highRes

}
</SCRIPT>

<FORM NAME="imageForm">
Choose an image:

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image1" CHECKED

onClick="displayImage('f15el.gif','f15e.gif')">F-15 Eagle

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image2"

onClick="displayImage('f15e2l.gif','f15e2.gif')">F-15 Eagle 2

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image3"

onClick="displayImage('ah64l.gif','ah64.gif')">AH-64 Apache

Property of Image

Implemented in Navigator 3.0:
274 JavaScript Reference

Image

</FORM>

See also Image.complete , Image.lowsrc

vspace

A string specifying a margin in pixels between the top and bottom edges of an
image and the surrounding text.

Description The vspace property reflects the VSPACE attribute of the IMG tag. For images
created with the Image constructor, the value of the vspace property is 0.

Examples See the examples for the height property.

See also Image.border , Image.height , Image.hspace , Image.width

width

A string specifying the width of an image in pixels.

Description The width property reflects the WIDTH attribute of the IMG tag. For images
created with the Image constructor, the value of the width property is the
actual, not the displayed, width of the image.

Examples See the examples for the height property.

See also Image.border , Image.height , Image.hspace , Image.vspace

Property of Image

Read-only

Implemented in Navigator 3.0:

Property of Image

Read-only

Implemented in Navigator 3.0:
Chapter 5, Document 275

Applet
Methods

handleEvent

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see “General Information about Events” on
page 481.

Applet
Includes a Java applet in a web page.

Created by The HTML APPLET tag. The JavaScript runtime engine creates an Applet object
corresponding to each applet in your document. It puts these objects in an
array in the document.applets property. You access an Applet object by
indexing this array.

To define an applet, use standard HTML syntax. If you specify the NAME
attribute, you can use the value of that attribute to index into the applets
array. To refer to an applet in JavaScript, you must supply the MAYSCRIPT
attribute in its definition.

Method of Image

Implemented in Navigator 4.0:

event The name of an event for which the specified object has an event handler.

Client-side object

Implemented in Navigator 3.0:
276 JavaScript Reference

Layer
Description The author of an HTML page must permit an applet to access JavaScript by
specifying the MAYSCRIPT attribute of the APPLET tag. This prevents an applet
from accessing JavaScript on a page without the knowledge of the page author.
For example, to allow the musicPicker.class applet access to JavaScript on
your page, specify the following:

<APPLET CODE="musicPicker.class" WIDTH=200 HEIGHT=35
NAME="musicApp" MAYSCRIPT>

Accessing JavaScript when the MAYSCRIPT attribute is not specified results in an
exception.

For more information on using applets, see the JavaScript Guide.

Property
Summary

All public properties of the applet are available for JavaScript access to the
Applet object.

Method Summary All public methods of the applet

Examples The following code launches an applet called musicApp :

<APPLET CODE="musicSelect.class" WIDTH=200 HEIGHT=35
NAME="musicApp" MAYSCRIPT>

</APPLET>

For more examples, see the JavaScript Guide.

See also MimeType , Plugin

Layer
Corresponds to a layer in an HTML page and provides a means for
manipulating that layer.

Created by The HTML LAYER or ILAYER tag, or using cascading style sheet syntax. The
JavaScript runtime engine creates a Layer object corresponding to each layer in
your document. It puts these objects in an array in the document.layers
property. You access a Layer object by indexing this array.

Client-side object

Implemented in Navigator 4.0
Chapter 5, Document 277

Layer
To define a layer, use standard HTML syntax. If you specify the ID attribute,
you can use the value of that attribute to index into the layers array.

For a complete description of layers, see Dynamic HTML in Netscape
Communicator1.

Some layer properties can be directly modified by assignment; for example,
"mylayer.visibility = hide ". A layer object also has methods that can
affect these properties.

1. http://developer.netscape.com/library/documentation/communicator/dynhtml/
index.htm

Event handlers • onMouseOver

• onMouseOut
• onLoad
• onFocus
• onBlur

Property
Summary

Property Description

above The layer object above this one in z-order, among all layers in
the document or the enclosing window object if this layer is
topmost.

background The image to use as the background for the layer’s canvas.

bgColor The color to use as a solid background color for the layer’s canvas.

below The layer object below this one in z-order, among all layers in
the document or null if this layer is at the bottom.

clip.bottom The bottom edge of the clipping rectangle (the part of the layer
that is visible.)

clip.height The height of the clipping rectangle (the part of the layer that is
visible.)

clip.left The left edge of the clipping rectangle (the part of the layer that is
visible.)

clip.right The right edge of the clipping rectangle (the part of the layer that
is visible.)

clip.top The top edge of the clipping rectangle (the part of the layer that is
visible.)
278 JavaScript Reference

Layer
Method Summary

clip.width The width of the clipping rectangle (the part of the layer that is
visible.)

document The layer’s associated document.

left The horizontal position of the layer's left edge, in pixels, relative
to the origin of its parent layer.

name A string specifying the name assigned to the layer through the ID
attribute in the LAYER tag.

pageX The horizontal position of the layer, in pixels, relative to the page.

page y The vertical position of the layer, in pixels, relative to the page.

parentLayer The layer object that contains this layer, or the enclosing
window object if this layer is not nested in another layer.

siblingAbov
e

The layer object above this one in z-order, among all layers that
share the same parent layer, or null if the layer has no sibling
above.

siblingBelo
w

The layer object below this one in z-order, among all layers that
share the same parent layer, or null if layer is at the bottom.

src A string specifying the URL of the layer’s content.

top The vertical position of the layer's top edge, in pixels, relative to
the origin of its parent layer.

visibility Whether or not the layer is visible.

zIndex The relative z-order of this layer with respect to its siblings.

Property Description

Method Description

captureEvents Sets the window or document to capture all events of the
specified type.

handleEvent Invokes the handler for the specified event.

load Changes the source of a layer to the contents of the specified
file, and simultaneously changes the width at which the
layer's HTML contents will be wrapped.

moveAbove Stacks this layer above the layer specified in the argument,
without changing either layer's horizontal or vertical position.
Chapter 5, Document 279

Layer
Note Just as in the case of a document, if you want to define mouse click response
for a layer, you must capture onMouseDown and onMouseUp events at the level
of the layer and process them as you want.

See “Events in Navigator 4.0” on page 482 for more details about capturing
events.

If an event occurs in a point where multiple layers overlap, the topmost layer
gets the event, even if it is transparent. However, if a layer is hidden, it does not
get events.

Properties

above

The layer object above this one in z-order, among all layers in the document
or the enclosing window object if this layer is topmost.

moveBelow Stacks this layer below the specified layer, without changing
either layer's horizontal or vertical position.

moveBy Changes the layer position by applying the specified deltas,
measured in pixels.

moveTo Moves the top-left corner of the window to the specified
screen coordinates.

moveToAbsolute Changes the layer position to the specified pixel coordinates
within the page (instead of the containing layer.)

releaseEvents Sets the layer to release captured events of the specified type,
sending the event to objects further along the event hierarchy.

resizeBy Resizes the layer by the specified height and width values (in
pixels).

resizeTo Resizes the layer to have the specified height and width
values (in pixels).

routeEvent Passes a captured event along the normal event hierarchy.

Method Description

Property of Layer
280 JavaScript Reference

Layer
background

The image to use as the background for the layer's canvas (which is the part of
the layer within the clip rectangle).

Description Each layer has a background property, whose value is an image object, whose
src attribute is a URL that indicates the image to use to provide a tiled
backdrop. The value is null if the layer has no backdrop. For example:

layer.background.src = "fishbg.gif";

bgColor

A string specifying the color to use as a solid background color for the layer’s
canvas (the part of the layer within the clip rectangle).

Description The bgColor property is expressed as a hexadecimal RGB triplet or as one of
the string literals listed in the JavaScript Guide. This property is the JavaScript
reflection of the BGCOLOR attribute of the BODY tag.

You can set the bgColor property at any time.

If you express the color as a hexadecimal RGB triplet, you must use the format
rrggbb . For example, the hexadecimal RGB values for salmon are red=FA ,
green=80 , and blue=72 , so the RGB triplet for salmon is "FA8072" .

Examples The following example sets the background color of the myLayer layer’s
canvas to aqua using a string literal:

myLayer.bgColor="aqua"

The following example sets the background color of the myLayer layer’s
canvas to aqua using a hexadecimal triplet:

Read-only

Implemented in Navigator 4.0

Property of Layer

Implemented in Navigator 4.0

Property of Layer

Implemented in Navigator 4.0
Chapter 5, Document 281

Layer
myLayer.bgColor="00FFFF"

See also Layer.bgColor

below

The layer object below this one in z-order, among all layers in the document
or null if this layer is at the bottom.

clip.bottom

The bottom edge of the clipping rectangle (the part of the layer that is visible.)
Any part of a layer that is outside the clipping rectangle is not displayed.

clip.height

The height of the clipping rectangle (the part of the layer that is visible.) Any
part of a layer that is outside the clipping rectangle is not displayed.

clip.left

The left edge of the clipping rectangle (the part of the layer that is visible.) Any
part of a layer that is outside the clipping rectangle is not displayed.

Property of Layer

Read-only

Implemented in Navigator 4.0

Property of Layer

Implemented in Navigator 4.0

Property of Layer

Implemented in Navigator 4.0

Property of Layer

Implemented in Navigator 4.0
282 JavaScript Reference

Layer
clip.right

The right edge of the clipping rectangle (the part of the layer that is visible.)
Any part of a layer that is outside the clipping rectangle is not displayed.

clip.top

The top edge of the clipping rectangle (the part of the layer that is visible.) Any
part of a layer that is outside the clipping rectangle is not displayed.

clip.width

The width of the clipping rectangle (the part of the layer that is visible.) Any
part of a layer that is outside the clipping rectangle is not displayed.

document

The layer’s associated document.

Description Each layer object contains its own document object. This object can be used
to access the images, applets, embeds, links, anchors and layers that are
contained within the layer. Methods of the document object can also be
invoked to change the contents of the layer.

Property of Layer

Implemented in Navigator 4.0

Property of Layer

Implemented in Navigator 4.0

Property of Layer

Implemented in Navigator 4.0

Property of Layer

Read-only

Implemented in Navigator 4.0
Chapter 5, Document 283

Layer
left

The horizontal position of the layer's left edge, in pixels, relative to the origin of
its parent layer.

name

A string specifying the name assigned to the layer through the ID attribute in
the LAYER tag.

pageX

The horizontal position of the layer, in pixels, relative to the page.

pageY

The vertical position of the layer, in pixels, relative to the page.

parentLayer

The layer object that contains this layer, or the enclosing window object if this
layer is not nested in another layer.

Property of Layer

Implemented in Navigator 4.0

Property of Layer

Read-only

Implemented in Navigator 4.0

Property of Layer

Implemented in Navigator 4.0

Property of Layer

Implemented in Navigator 4.0

Property of Layer

Read-only
284 JavaScript Reference

Layer
siblingAbove

The layer object above this one in z-order, among all layers that share the same
parent layer or null if the layer has no sibling above.

siblingBelow

The layer object below this one in z-order, among all layers that share the
same parent layer or null if layer is at the bottom.

src

A URL string specifying the source of the layer’s content. Corresponds to the
SRC attribute.

top

The top property is a synonym for the topmost Navigator window, which is a
document window or web browser window.

Implemented in Navigator 4.0

Property of Layer

Read-only

Implemented in Navigator 4.0

Property of Layer

Read-only

Implemented in Navigator 4.0

Property of Layer

Implemented in Navigator 4.0

Property of Layer

Read-only

Implemented in Navigator 4.0
Chapter 5, Document 285

Layer
Description The top property refers to the topmost window that contains frames or nested
framesets. Use the top property to refer to this ancestor window.

The value of the top property is

<object objectReference>

where objectReference is an internal reference.

Examples The statement top.close() closes the topmost ancestor window.

The statement top.length specifies the number of frames contained within the
topmost ancestor window. When the topmost ancestor is defined as follows,
top.length returns three:

<FRAMESET COLS="30%,40%,30%">
<FRAME SRC=child1.htm NAME="childFrame1">
<FRAME SRC=child2.htm NAME="childFrame2">
<FRAME SRC=child3.htm NAME="childFrame3">
</FRAMESET>

visibility

Whether or not the layer is visible.

Description A value of show means show the layer; hide means hide the layer; inherit
means inherit the visibility of the parent layer.

zIndex

The relative z-order of this layer with respect to its siblings.

Description Sibling layers with lower numbered z-indexes are stacked underneath this
layer. The value of zIndex must be 0 or a positive integer.

Property of Layer

Implemented in Navigator 4.0

Method of Layer

Implemented in Navigator 4.0
286 JavaScript Reference

Layer
Methods

captureEvents

Sets the window or document to capture all events of the specified type.

Syntax captureEvents(eventType)

Parameters

Description When a window with frames wants to capture events in pages loaded from
different locations (servers), you need to use captureEvents in a signed script
and precede it with enableExternalCapture . For more information and an
example, see enableExternalCapture .

captureEvents works in tandem with releaseEvents , routeEvent , and
handleEvent . For more information, see “Events in Navigator 4.0” on
page 482.

handleEvent

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description handleEvent works in tandem with captureEvents , releaseEvents , and
routeEvent . For more information, see “Events in Navigator 4.0” on page 482.

Method of Layer

Implemented in Navigator 4.0

eventType Type of event to be captured. Available event types are listed with event .

Method of Layer

Implemented in Navigator 4.0

event Name of an event for which the specified object has an event handler.
Chapter 5, Document 287

Layer
load

Changes the source of a layer to the contents of the specified file and
simultaneously changes the width at which the layer’s HTML contents are
wrapped.

Syntax load(sourcestring, width)

Parameters

moveAbove

Stacks this layer above the layer specified in the argument, without changing
either layer's horizontal or vertical position. After re-stacking, both layers will
share the same parent layer.

Syntax moveAbove(aLayer)

Parameters

Method of Layer

Implemented in Navigator 4.0

sourcestring A string indicating the external file name.

width The width of the layer as a pixel value.

Method of Layer

Implemented in Navigator 4.0

aLayer The layer above which to move the current layer.
288 JavaScript Reference

Layer
moveBelow

Stacks this layer below the specified layer, without changing either layer's
horizontal or vertical position. After re-stacking, both layers will share the same
parent layer.

Syntax moveBelow(aLayer)

Parameters

moveBy

Changes the layer position by applying the specified deltas, measured in pixels.

Syntax moveBy(horizontal, vertical)

Parameters

moveTo

Moves the top-left corner of the window to the specified screen coordinates.

Syntax moveTo(x-coordinate, y-coordinate)

Method of Layer

Implemented in Navigator 4.0

aLayer The layer below which to move the current layer.

Method of Layer

Implemented in Navigator 4.0

horizontal The number of pixels by which to move the layer horizontally.

vertical The number of pixels by which to move the layer vertically.

Method of Layer

Implemented in Navigator 4.0
Chapter 5, Document 289

Layer
Parameters

Security To move a window offscreen, call the moveTo method in a signed script. For
information on security in Navigator 4.0, see Chapter 7, “JavaScript Security,” in
the JavaScript Guide.

Description Changes the layer position to the specified pixel coordinates within the
containing layer. For ILayers, moves the layer relative to the natural inflow
position of the layer.

See also Layer.moveBy

moveToAbsolute

Changes the layer position to the specified pixel coordinates within the page
(instead of the containing layer.)

Syntax moveToAbsolute(x, y)

Parameters

Description This method is equivalent to setting both the pageX and pageY properties of
the layer object.

releaseEvents

Sets the window or document to release captured events of the specified type,
sending the event to objects further along the event hierarchy.

x-coordinate An integer representing the top edge of the window in screen
coordinates.

y-coordinate An integer representing the left edge of the window in screen
coordinates.

Method of Layer

Implemented in Navigator 4.0

x An integer representing the top edge of the window in pixel coordinates.

y An integer representing the left edge of the window in pixel coordinates.

Method of Layer
290 JavaScript Reference

Layer
Syntax releaseEvents(eventType)

Parameters

Description If the original target of the event is a window, the window receives the event
even if it is set to release that type of event. releaseEvents works in tandem
with captureEvents , routeEvent , and handleEvent . For more information,
see “Events in Navigator 4.0” on page 482.

resizeBy

Resizes the layer by the specified height and width values (in pixels).

Syntax resizeBy(width, height)

Parameters

Description This does not layout any HTML contained in the layer again. Instead, the layer
contents may be clipped by the new boundaries of the layer. This method has
the same effect as adding width and height to clip.width and
clip.height .

resizeTo

Resizes the layer to have the specified height and width values (in pixels).

Description This does not layout any HTML contained in the layer again. Instead, the layer

Implemented in Navigator 4.0

eventType Type of event to be captured.

Method of Layer

Implemented in Navigator 4.0

width The number of pixels by which to resize the layer horizontally.

height The number of pixels by which to resize the layer vertically.

Method of Layer

Implemented in Navigator 4.0

Parameters

Description This does not layout any HTML contained in the layer again. Instead, the layer
contents may be clipped by the new boundaries of the layer. This method has
the same effect as adding width and height to clip.width and
clip.height .

resizeTo

Resizes the layer to have the specified height and width values (in pixels).

Description This does not layout any HTML contained in the layer again. Instead, the layer
contents may be clipped by the new boundaries of the layer.

Syntax resizeBy(width, height)

Parameters

Description This method has the same effect setting clip.width and clip.height .

routeEvent

Passes a captured event along the normal event hierarchy.

Syntax routeEvent(event)

Parameters

width The number of pixels by which to resize the layer horizontally.

height The number of pixels by which to resize the layer vertically.

Method of Layer

Implemented in Navigator 4.0

width An integer representing the layer’s width in pixels.

height An integer representing the layer’s height in pixels.

Method of Layer

Implemented in Navigator 4.0

event The event to route.

Parameters

Description This does not layout any HTML contained in the layer again. Instead, the layer
contents may be clipped by the new boundaries of the layer. This method has
the same effect as adding width and height to clip.width and
clip.height .

resizeTo

Resizes the layer to have the specified height and width values (in pixels).

Description This does not layout any HTML contained in the layer again. Instead, the layer
contents may be clipped by the new boundaries of the layer.

Syntax resizeBy(width, height)

Parameters

Description This method has the same effect setting clip.width and clip.height .

routeEvent

Passes a captured event along the normal event hierarchy.

Syntax routeEvent(event)

Parameters

width The number of pixels by which to resize the layer horizontally.

height The number of pixels by which to resize the layer vertically.

Method of Layer

Implemented in Navigator 4.0

width An integer representing the layer’s width in pixels.

height An integer representing the layer’s height in pixels.

Method of Layer

Implemented in Navigator 4.0

event The event to route.
Chapter 5, Document 291

DescriptionDescription

Layer

292 JavaScript Reference

C h a p t e r

6
Window
This chapter deals with the Window object and the client-side objects associated
with it: Frame , Location , and History .

Table 6.1 summarizes the objects in this chapter.

Table 6.1 Window objects

Object Description

Frame A window that can display multiple, independently
scrollable frames on a single screen, each with its own
distinct URL.

History Contains an array of information on the URLs that the
client has visited within a window.

Location Contains information on the current URL.

screen Contains properties describing the display screen and
colors.

Window Represents a browser window or frame. This is the top-
level object for each document , Location , and
History object group.
Chapter 6, Window 293

Window
Window
Represents a browser window or frame. This is the top-level object for each
document , Location , and History object group.

Created by The JavaScript runtime engine creates a Window object for each BODY or
FRAMESET tag. It also creates a Window object to represent each frame defined
in a FRAME tag. In addition, you can create other windows by calling the
Window.open method. For details on defining a window, see open .

Event handlers • onBlur

• onDragDrop

• onError

• onFocus

• onLoad

• onMove

• onResize

• onUnload

In Navigator 3.0, on some platforms, placing an onBlur or onFocus event
handler in a FRAMESET tag has no effect.

Description The Window object is the top-level object in the JavaScript client hierarchy. A
Window object can represent either a top-level window or a frame inside a
frameset. As a matter of convenience, you can think about a Frame object as a
Window object that isn’t a top-level window. However, there is not really a
separate Frame class; these objects really are Window objects, with a very few
minor differences:

Client-side object.

Implemented in Navigator 2.0
Navigator 3.0: added closed , history , and opener properties;
added blur , focus , and scroll methods; added onBlur , onError ,
and onFocus event handlers
Navigator 4.0: added innerHeight , innerWidth , locationbar ,
menubar , outerHeight , outerWidth , pageXOffset ,
pageYOffset , personalbar , scrollbars , statusbar , and
toolbar properties; added back , captureEvents ,
clearInterval , disableExternalCapture ,
enableExternalCapture , find , forward , handleEvent , home,
moveBy, moveTo, releaseEvents , resizeBy , resizeTo ,
routeEvent , scrollBy , scrollTo , setInterval , and stop
methods; deprecated scroll method.
294 JavaScript Reference

Window
• For a top-level window, the parent and top properties are references to
the window itself. For a frame, the top refers to the topmost browser
window, and parent refers to the parent window of the current window.

• For a top-level window, setting the defaultStatus or status property
sets the text appearing in the browser status line. For a frame, setting these
properties only sets the status line text when the cursor is over the frame.

• The close method is not useful for windows that are frames.

• To create an onBlur or onFocus event handler for a frame, you must set
the onblur or onfocus property and specify it in all lowercase (you cannot
specify it in HTML).

• If a FRAME tag contains SRC and NAME attributes, you can refer to that frame
from a sibling frame by using parent.frameName or
parent.frames[index] . For example, if the fourth frame in a set has
NAME="homeFrame", sibling frames can refer to that frame using
parent.homeFrame or parent.frames[3] .

For all windows, the self and window properties of a Window object are
synonyms for the current window, and you can optionally use them to refer to
the current window. For example, you can close the current window by calling
the close method of either window or self . You can use these properties to
make your code more readable or to disambiguate the property reference
self.status from a form called status . See the properties and methods
listed below for more examples.

Because the existence of the current window is assumed, you do not have to
refer to the name of the window when you call its methods and assign its
properties. For example, status="Jump to a new location" is a valid
property assignment, and close() is a valid method call.

However, when you open or close a window within an event handler, you
must specify window.open() or window.close() instead of simply using
open() or close() . Due to the scoping of static objects in JavaScript, a call to
close() without specifying an object name is equivalent to
document.close() .

For the same reason, when you refer to the location object within an event
handler, you must specify window.location instead of simply using
location . A call to location without specifying an object name is equivalent
to document.location , which is a synonym for document.URL .
Chapter 6, Window 295

Window
You can refer to a window’s Frame objects in your code by using the frames
array. In a window with a FRAMESET tag, the frames array contains an entry for
each frame.

A windows lacks event handlers until HTML that contains a BODY or FRAMESET
tag is loaded into it.

Property
Summary

Property Description

closed Specifies whether a window has been closed.

defaultStat
us

Reflects the default message displayed in the window’s status bar.

document Contains information on the current document, and provides
methods for displaying HTML output to the user.

frames An array reflecting all the frames in a window.

history Contains information on the URLs that the client has visited within
a window.

innerHeight Specifies the vertical dimension, in pixels, of the window's content
area.

innerWidth Specifies the horizontal dimension, in pixels, of the window's
content area.

length The number of frames in the window.

location Contains information on the current URL.

locationbar Represents the browser window's location bar.

menubar Represents the browser window's menu bar.

name A unique name used to refer to this window.

opener Specifies the window name of the calling document when a
window is opened using the open method

outerHeight Specifies the vertical dimension, in pixels, of the window's outside
boundary.

outerWidth Specifies the horizontal dimension, in pixels, of the window's
outside boundary.

pageXOffset Provides the current x-position, in pixels, of a window's viewed
page.
296 JavaScript Reference

Window
Method Summary

pageYOffset Provides the current y-position, in pixels, of a window's viewed
page.

parent A synonym for a window or frame whose frameset contains the
current frame.

personalbar Represents the browser window's personal bar (also called the
directories bar).

scrollbars Represents the browser window's scroll bars.

self A synonym for the current window.

status Specifies a priority or transient message in the window’s status
bar.

statusbar Represents the browser window's status bar.

toolbar Represents the browser window's tool bar.

top A synonym for the topmost browser window.

window A synonym for the current window.

Property Description

Method Description

alert Displays an Alert dialog box with a message and an
OK button.

back Undoes the last history step in any frame within the
top-level window.

blur Removes focus from the specified object.

captureEvents Sets the window or document to capture all events
of the specified type.

clearInterval Cancels a timeout that was set with the
setInterval method.

clearTimeout Cancels a timeout that was set with the
setTimeout method.

close Closes the specified window.

confirm Displays a Confirm dialog box with the specified
message and OK and Cancel buttons.
Chapter 6, Window 297

Window
disableExternalCaptur
e

Disables external event capturing set by the
enableExternalCapture method.

enableExternalCapture Allows a window with frames to capture events in
pages loaded from different locations (servers).

find Finds the specified text string in the contents of the
specified window.

focus Gives focus to the specified object.

forward Loads the next URL in the history list.

handleEvent Invokes the handler for the specified event.

home Points the browser to the URL specified in
preferences as the user's home page.

moveBy Moves the window by the specified amounts.

moveTo Moves the top-left corner of the window to the
specified screen coordinates.

open Opens a new web browser window.

print Prints the contents of the window or frame.

prompt Displays a Prompt dialog box with a message and
an input field.

releaseEvents Sets the window to release captured events of the
specified type, sending the event to objects further
along the event hierarchy.

resizeBy Resizes an entire window by moving the window’s
bottom-right corner by the specified amount.

resizeTo Resizes an entire window to the specified outer
height and width.

routeEvent Passes a captured event along the normal event
hierarchy.

scroll Scrolls a window to a specified coordinate.

scrollBy Scrolls the viewing area of a window by the
specified amount.

scrollTo Scrolls the viewing area of the window to the
specified coordinates, such that the specified point
becomes the top-left corner.

Method Description
298 JavaScript Reference

Window
Examples Example 1. Windows opening other windows. In the following example,
the document in the top window opens a second window, window2 , and
defines push buttons that open a message window, write to the message
window, close the message window, and close window2 . The onLoad and
onUnload event handlers of the document loaded into window2 display alerts
when the window opens and closes.

win1.html , which defines the frames for the first window, contains the
following code:

<HTML>
<HEAD>
<TITLE>Window object example: Window 1</TITLE>
</HEAD>
<BODY BGCOLOR="antiquewhite">
<SCRIPT>
window2=open("win2.html","secondWindow",

"scrollbars=yes,width=250, height=400")
document.writeln("The first window has no name: "

+ window.name + "")
document.writeln("
The second window is named: "

+ window2.name + "")
</SCRIPT>
<FORM NAME="form1">
<P><INPUT TYPE="button" VALUE="Open a message window"

onClick = "window3=window.open('','messageWindow',
'scrollbars=yes,width=175, height=300')">

<P><INPUT TYPE="button" VALUE="Write to the message window"
onClick="window3.document.writeln('Hey there');
window3.document.close()">

<P><INPUT TYPE="button" VALUE="Close the message window"
onClick="window3.close()">

<P><INPUT TYPE="button" VALUE="Close window2"
onClick="window2.close()">

</FORM>
</BODY>
</HTML>

setInterval Evaluates an expression or calls a function every
time a specified number of milliseconds elapses.

setTimeout Evaluates an expression or calls a function once
after a specified number of milliseconds has elapsed.

stop Stops the current download.

Method Description
Chapter 6, Window 299

Window
win2.html , which defines the content for window2 , contains the following
code:

<HTML>
<HEAD>
<TITLE>Window object example: Window 2</TITLE>
</HEAD>
<BODY BGCOLOR="oldlace"

onLoad="alert('Message from ' + window.name + ': Hello, World.')"
onUnload="alert('Message from ' + window.name + ': I\'m closing')">

Some numbers
one
two
three
four
</BODY>
</HTML>

Example 2. Creating frames. The following example creates two windows,
each with four frames. In the first window, the first frame contains push buttons
that change the background colors of the frames in both windows.
framset1.html , which defines the frames for the first window, contains the
following code:

<HTML>
<HEAD>
<TITLE>Frames and Framesets: Window 1</TITLE>
</HEAD>
<FRAMESET ROWS="50%,50%" COLS="40%,60%"

onLoad="alert('Hello, World.')">
<FRAME SRC=framcon1.html NAME="frame1">
<FRAME SRC=framcon2.html NAME="frame2">
<FRAME SRC=framcon2.html NAME="frame3">
<FRAME SRC=framcon2.html NAME="frame4">
</FRAMESET>
</HTML>

framset2.html , which defines the frames for the second window, contains the
following code:

<HTML>
<HEAD>
<TITLE>Frames and Framesets: Window 2</TITLE>
</HEAD>
<FRAMESET ROWS="50%,50%" COLS="40%,60%">
<FRAME SRC=framcon2.html NAME="frame1">
<FRAME SRC=framcon2.html NAME="frame2">
<FRAME SRC=framcon2.html NAME="frame3">
<FRAME SRC=framcon2.html NAME="frame4">
300 JavaScript Reference

Window
</FRAMESET>
</HTML>

framcon1.html , which defines the content for the first frame in the first
window, contains the following code:

<HTML>
<BODY>
<H1>Frame1</H1>
<P>Click here

to load a different file into frame 2.
<SCRIPT>
window2=open("framset2.htm","secondFrameset")
</SCRIPT>
<FORM>
<P><INPUT TYPE="button" VALUE="Change frame2 to teal"

onClick="parent.frame2.document.bgColor='teal'">
<P><INPUT TYPE="button" VALUE="Change frame3 to slateblue"

onClick="parent.frames[2].document.bgColor='slateblue'">
<P><INPUT TYPE="button" VALUE="Change frame4 to darkturquoise"

onClick="top.frames[3].document.bgColor='darkturquoise'">

<P><INPUT TYPE="button" VALUE="window2.frame2 to violet"
onClick="window2.frame2.document.bgColor='violet'">

<P><INPUT TYPE="button" VALUE="window2.frame3 to fuchsia"
onClick="window2.frames[2].document.bgColor='fuchsia'">

<P><INPUT TYPE="button" VALUE="window2.frame4 to deeppink"
onClick="window2.frames[3].document.bgColor='deeppink'">

</FORM>
</BODY>
</HTML>

framcon2.html , which defines the content for the remaining frames, contains
the following code:

<HTML>
<BODY>
<P>This is a frame.
</BODY>
</HTML>

framcon3.html , which is referenced in a Link object in framcon1.html ,
contains the following code:

<HTML>
<BODY>
<P>This is a frame. What do you think?
</BODY>
</HTML>

See also document , Frame
Chapter 6, Window 301

Window
Properties

closed

Specifies whether a window is closed.

Description The closed property is a boolean value that specifies whether a window has
been closed. When a window closes, the window object that represents it
continues to exist, and its closed property is set to true.

Use closed to determine whether a window that you opened, and to which
you still hold a reference (from the return value of window.open), is still open.
Once a window is closed, you should not attempt to manipulate it.

Examples Example 1. The following code opens a window, win1 , then later checks to
see if that window has been closed. A function is called depending on whether
win1 is closed.

win1=window.open('opener1.html','window1','width=300,height=300')
...
if (win1.closed)

function1()
else
function2()

Example 2. The following code determines if the current window’s opener
window is still closed, and calls the appropriate function.

if (window.opener.closed)
function1()
else
function2()

See also Window.close , Window.open

Property of Window

Read-only

Implemented in Navigator 3.0
302 JavaScript Reference

Window
defaultStatus

The default message displayed in the status bar at the bottom of the window.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The defaultStatus message appears when nothing else is in the status bar.
Do not confuse the defaultStatus property with the status property. The
status property reflects a priority or transient message in the status bar, such
as the message that appears when a mouseOver event occurs over an anchor.

You can set the defaultStatus property at any time. You must return true if
you want to set the defaultStatus property in the onMouseOut or
onMouseOver event handlers.

Examples In the following example, the statusSetter function sets both the status
and defaultStatus properties in an onMouseOver event handler:

function statusSetter() {
window.defaultStatus = "Click the link for the Netscape home page"
window.status = "Netscape home page"

}

<A HREF="http://home.netscape.com"
onMouseOver = "statusSetter(); return true">Netscape

In the previous example, notice that the onMouseOver event handler returns a
value of true. You must return true to set status or defaultStatus in an
event handler.

See also Window.status

document

Contains information on the current document, and provides methods for
displaying HTML output to the user.

Property of Window

Implemented in Navigator 2.0

Property of Window

Implemented in Navigator 2.0
Chapter 6, Window 303

Window
Description The value of this property is the window’s associated document object.

frames

An array of objects corresponding to child frames (created with the FRAME tag)
in source order.

You can refer to the child frames of a window by using the frames array. This
array contains an entry for each child frame (created with the FRAME tag) in a
window containing a FRAMESET tag; the entries are in source order. For
example, if a window contains three child frames whose NAME attributes are
fr1 , fr2 , and fr3 , you can refer to the objects in the images array either as:

parent.frames["fr1"]
parent.frames["fr2"]
parent.frames["fr3"]

or as:

parent.frames[0]
parent.frames[1]
parent.frames[2]

You can find out how many child frames the window has by using the length
property of the Window itself or of the frames array.

The value of each element in the frames array is <object nameAttribute> ,
where nameAttribute is the NAME attribute of the frame.

history

Contains information on the URLs that the client has visited within a window.

Description The value of this property is the window’s associated History object.

Property of Window

Read-only

Implemented in Navigator 2.0

Property of Window

Implemented in Navigator 3.0
304 JavaScript Reference

Window
innerHeight

Specifies the vertical dimension, in pixels, of the window's content area.

Description To create a window smaller than 100 x 100 pixels, set this property in a signed
script.

Security To set the inner height of a window to a size smaller than 100 x 100 or larger
than the screen can accommodate, you need the UniversalBrowserWrite
privilege. For information on security in Navigator 4.0, see Chapter 7,
“JavaScript Security,” in the JavaScript Guide.

See also Window.innerWidth , Window.outerHeight , Window.outerWidth

innerWidth

Specifies the horizontal dimension, in pixels, of the window's content area.

Description To create a window smaller than 100 x 100 pixels, set this property in a signed
script.

Security To set the inner width of a window to a size smaller than 100 x 100 or larger
than the screen can accommodate, you need the UniversalBrowserWrite
privilege. For information on security in Navigator 4.0, see Chapter 7,
“JavaScript Security,” in the JavaScript Guide.

See also Window.innerHeight , Window.outerHeight , Window.outerWidth

length

The number of child frames in the window.

Property of Window

Implemented in Navigator 4.0

Property of Window

Implemented in Navigator 4.0

Property of Window

Read-only

Implemented in Navigator 2.0
Chapter 6, Window 305

Window
Description This property gives you the same result as using the length property of the
frames array.

location

Contains information on the current URL.

Description The value of this property is the window’s associated Location object.

locationbar

Represents the browser window's location bar (the region containing the
bookmark and URL areas).

Description The value of the locationbar property itself has one property, visible . If
true, the location bar is visible; if false, it is hidden.

Security Setting the value of the location bar’s visible property requires the
UniversalBrowserWrite privilege. For information on security in
Navigator 4.0, see Chapter 7, “JavaScript Security,” in the JavaScript Guide.

Examples The following example would make the referenced window “chromeless”
(chromeless windows lack toolbars, scrollbars, status areas, and so on, much
like a dialog box) by hiding most of the user interface toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

Property of Window

Implemented in Navigator 2.0

Property of Window

Implemented in Navigator 4.0
306 JavaScript Reference

Window
menubar

Represents the browser window’s menu bar. This region contains browser’s
drop-down menus such as File, Edit, View, Go, Communicator, and so on.

Description The value of the menubar property itself one property, visible . If true, the
menu bar is visible; if false, it is hidden.

Security Setting the value of the menu bar’s visible property requires the
UniversalBrowserWrite privilege. For information on security in
Navigator 4.0, see Chapter 7, “JavaScript Security,” in the JavaScript Guide.

Examples The following example would make the referenced window “chromeless”
(chromeless windows lack toolbars, scrollbars, status areas, and so on, much
like a dialog box) by hiding most of the user interface toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

name

A string specifying the window’s name.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description In Navigator 2.0, NAME was a read-only property. In later versions, this property
is modifiable by your code. This allows you to assign a name to a top-level
window.

Property of Window

Implemented in Navigator 4.0

Property of Window

Read-only (2.0); Modifiable (later versions)

Implemented in Navigator 2.0
Chapter 6, Window 307

Window
Examples In the following example, the first statement creates a window called
netscapeWin . The second statement displays the value "netscapeHomePage"
in the Alert dialog box, because "netscapeHomePage" is the value of the
windowName argument of netscapeWin .

netscapeWin=window.open("http://home.netscape.com","netscapeHomePage")
alert(netscapeWin.name)

opener

Specifies the window of the calling document when a window is opened using
the open method.

Description When a source document opens a destination window by calling the open
method, the opener property specifies the window of the source document.
Evaluate the opener property from the destination window.

This property persists across document unload in the opened window.

You can change the opener property at any time.

You may use Window.open to open a new window and then use Window.open
on that window to open another window, and so on. In this way, you can end
up with a chain of opened windows, each of which has an opener property
pointing to the window that opened it.

Communicator allows a maximum of 100 windows to be around at once. If you
open window2 from window1 and then are done with window1 , be sure to set
the opener property of window2 to null . This allows JavaScript to garbage
collect window1 . If you do not set the opener property to null , the window1
object remains, even though it’s no longer really needed.

Examples Example 1: Close the opener. The following code closes the window that
opened the current window. When the opener window closes, opener is
unchanged. However, window.opener.name then evaluates to undefined.

window.opener.close()

Example 2: Close the main browser window.

top.opener.close()

Property of Window

Implemented in Navigator 3.0
308 JavaScript Reference

Window
Example 3: Evaluate the name of the opener. A window can determine the
name of its opener as follows:

document.write("
opener property is " + window.opener.name)

Example 4: Change the value of opener. The following code changes the
value of the opener property to null. After this code executes, you cannot close
the opener window as shown in Example 1.

window.opener=null

Example 5: Change a property of the opener. The following code changes
the background color of the window specified by the opener property.

window.opener.document.bgColor='bisque'

See also Window.close , Window.open

outerHeight

Specifies the vertical dimension, in pixels, of the window's outside boundary.

Description The outer boundary includes the scroll bars, the status bar, the tool bars, and
other “chrome” (window border user interface elements). To create a window
smaller than 100 x 100 pixels, set this property in a signed script.

See also Window.innerWidth , Window.innerHeight , Window.outerWidth

outerWidth

Specifies the horizontal dimension, in pixels, of the window's outside
boundary.

Description The outer boundary includes the scroll bars, the status bar, the tool bars, and
other “chrome” (window border user interface elements). To create a window
smaller than 100 x 100 pixels, set this property in a signed script.

See also Window.innerWidth , Window.innerHeight , Window.outerHeight

Property of Window

Implemented in Navigator 4.0

Property of Window

Implemented in Navigator 4.0
Chapter 6, Window 309

Window
pageXOffset

Provides the current x-position, in pixels, of a window's viewed page.

Description The pageXOffset property provides the current x-position of a page as it
relates to the upper-left corner of the window's content area. This property is
useful when you need to find the current location of the scrolled page before
using scrollTo or scrollBy .

Example The following example returns the x-position of the viewed page.

x = myWindow.pageXOffset

See Also Window.pageYOffset

pageYOffset

Provides the current y-position, in pixels, of a window's viewed page.

Description The pageYOffset property provides the current y-position of a page as it
relates to the upper-left corner of the window's content area. This property is
useful when you need to find the current location of the scrolled page before
using scrollTo or scrollBy .

Example The following example returns the y-position of the viewed page.

x = myWindow.pageYOffset

See also Window.pageXOffset

Property of Window

Read-only

Implemented in Navigator 4.0

Property of Window

Read-only

Implemented in Navigator 4.0
310 JavaScript Reference

Window
parent

The parent property is the window or frame whose frameset contains the
current frame.

Description This property is only meaningful for frames; that is, windows that are not top-
level windows.

The parent property refers to the FRAMESET window of a frame. Child frames
within a frameset refer to sibling frames by using parent in place of the
window name in one of the following ways:

parent.frameName
parent.frames[index]

For example, if the fourth frame in a set has NAME="homeFrame", sibling frames
can refer to that frame using parent.homeFrame or parent.frames[3] .

You can use parent.parent to refer to the “grandparent” frame or window
when a FRAMESET tag is nested within a child frame.

The value of the parent property is

<object nameAttribute>

where nameAttribute is the NAME attribute if the parent is a frame, or an
internal reference if the parent is a window.

Examples See examples for Frame .

personalbar

Represents the browser window’s personal bar (also called the directories bar).
This is the region the user can use for easy access to certain bookmarks.

Property of Window

Read-only

Implemented in Navigator 2.0

Property of Window

Implemented in Navigator 4.0
Chapter 6, Window 311

Window
Description The value of the personalbar property itself one property, visible . If true,
the personal bar is visible; if false, it is hidden.

Security Setting the value of the personal bar’s visible property requires the
UniversalBrowserWrite privilege. For information on security in
Navigator 4.0, see Chapter 7, “JavaScript Security,” in the JavaScript Guide.

Examples The following example would make the referenced window “chromeless”
(chromeless windows lack toolbars, scrollbars, status areas, and so on, much
like a dialog box) by hiding most of the user interface toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

scrollbars

Represents the browser window’s vertical and horizontal scroll bars for the
document area.

Description The value of the scrollbars property itself has one property, visible . If true,
both scrollbars are visible; if false, they are hidden.

Security Setting the value of the scrollbars’ visible property requires the
UniversalBrowserWrite privilege. For information on security in
Navigator 4.0, see Chapter 7, “JavaScript Security,” in the JavaScript Guide.

Examples The following example would make the referenced window “chromeless”
(chromeless windows lack toolbars, scrollbars, status areas, and so on, much
like a dialog box) by hiding most of the user interface toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

Property of Window

Implemented in Navigator 4.0
312 JavaScript Reference

Window
self

The self property is a synonym for the current window.

Description The self property refers to the current window. That is, the value of this
property is a synonym for the object itself.

Use the self property to disambiguate a window property from a form or form
element of the same name. You can also use the self property to make your
code more readable.

The value of the self property is

<object nameAttribute>

where nameAttribute is the NAME attribute if self refers to a frame, or an
internal reference if self refers to a window.

Examples In the following example, self.status is used to set the status property of
the current window. This usage disambiguates the status property of the
current window from a form or form element called status within the current
window.

<A HREF=""
onClick="this.href=pickRandomURL()"
onMouseOver="self.status='Pick a random URL' ; return true">

Go!

status

Specifies a priority or transient message in the status bar at the bottom of the
window, such as the message that appears when a mouseOver event occurs
over an anchor.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Property of Window

Read-only

Implemented in Navigator 2.0

Property of Window

Implemented in Navigator 2.0
Chapter 6, Window 313

Window
Description Do not confuse the status property with the defaultStatus property. The
defaultStatus property reflects the default message displayed in the status
bar.

You can set the status property at any time. You must return true if you want
to set the status property in the onMouseOver event handler.

Examples Suppose you have created a JavaScript function called pickRandomURL that lets
you select a URL at random. You can use the onClick event handler of an
anchor to specify a value for the HREF attribute of the anchor dynamically, and
the onMouseOver event handler to specify a custom message for the window in
the status property:

<A HREF=""
onClick="this.href=pickRandomURL()"
onMouseOver="self.status='Pick a random URL'; return true">

Go!

In the preceding example, the status property of the window is assigned to
the window’s self property, as self.status .

See also Window.defaultStatus

statusbar

Represents the browser window's status bar. This is the region containing the
security indicator, browser status, and so on.

Description The value of the statusbar property itself one property, visible . If true, the
status bar is visible; if false, it is hidden.

Security Setting the value of the status bar’s visible property requires the
UniversalBrowserWrite privilege. For information on security in
Navigator 4.0, see Chapter 7, “JavaScript Security,” in the JavaScript Guide.

Examples The following example would make the referenced window “chromeless”
(chromeless windows lack toolbars, scrollbars, status areas, and so on, much
like a dialog box) by hiding most of the user interface toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;

Property of Window

Implemented in Navigator 4.0
314 JavaScript Reference

Window
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

toolbar

Represents the browser window’s tool bar, containing the navigation buttons,
such as Back, Forward, Reload, Home, and so on.

Description The value of the toolbar property itself one property, visible . If true, the
tool bar is visible; if false, it is hidden.

Security Setting the value of the tool bar’s visible property requires the
UniversalBrowserWrite privilege. For information on security in
Navigator 4.0, see Chapter 7, “JavaScript Security,” in the JavaScript Guide.

Examples The following example would make the referenced window “chromeless”
(chromeless windows lack toolbars, scrollbars, status areas, and so on, much
like a dialog box) by hiding most of the user interface toolbars:

self.menubar.visible=false;
self.toolbar.visible=false;
self.locationbar.visible=false;
self.personalbar.visible=false;
self.scrollbars.visible=false;
self.statusbar.visible=false;

top

The top property is a synonym for the topmost browser window, which is a
document window or web browser window.

Description The top property refers to the topmost window that contains frames or nested
framesets. Use the top property to refer to this ancestor window.

The value of the top property is

Property of Window

Implemented in Navigator 4.0

Property of Window

Read-only

Implemented in Navigator 2.0
Chapter 6, Window 315

Window
<object objectReference>

where objectReference is an internal reference.

Examples The statement top.close() closes the topmost ancestor window.

The statement top.length specifies the number of frames contained within the
topmost ancestor window. When the topmost ancestor is defined as follows,
top.length returns three:

<FRAMESET COLS="30%,40%,30%">
<FRAME SRC=child1.htm NAME="childFrame1">
<FRAME SRC=child2.htm NAME="childFrame2">
<FRAME SRC=child3.htm NAME="childFrame3">
</FRAMESET>

The following example sets the background color of a frame called myFrame to
red. myFrame is a child of the topmost ancestor window.

top.myFrame.document.bgColor="red"

window

The window property is a synonym for the current window or frame.

Description The window property refers to the current window or frame. That is, the value
of this property is a synonym for the object itself.

Although you can use the window property as a synonym for the current frame,
your code may be more readable if you use the self property. For example,
window.name and self.name both specify the name of the current frame, but
self.name may be easier to understand (because a frame is not displayed as a
separate window).

Use the window property to disambiguate a property of the window object from
a form or form element of the same name. You can also use the window
property to make your code more readable.

The value of the window property is

<object nameAttribute>

Property of Window

Read-only

Implemented in Navigator 2.0
316 JavaScript Reference

Window
where nameAttribute is the NAME attribute if window refers to a frame, or an
internal reference if window refers to a window.

Examples In the following example, window.status is used to set the status property
of the current window. This usage disambiguates the status property of the
current window from a form called “status” within the current window.

<A HREF=""
onClick="this.href=pickRandomURL()"
onMouseOver="window.status='Pick a random URL' ; return true">

Go!

See also Window.self

Methods

alert

Displays an Alert dialog box with a message and an OK button.

Syntax alert("message")

Parameters

Description An alert dialog box looks as follows:

Use the alert method to display a message that does not require a user
decision. The message argument specifies a message that the dialog box
contains.

Method of Window

Implemented in Navigator 2.0

message A string.
Chapter 6, Window 317

Window
You cannot specify a title for an alert dialog box, but you can use the open
method to create your own alert dialog box. See open .

Examples In the following example, the testValue function checks the name entered by
a user in the Text object of a form to make sure that it is no more than eight
characters in length. This example uses the alert method to prompt the user
to enter a valid value.

function testValue(textElement) {
if (textElement.length > 8) {

alert("Please enter a name that is 8 characters or less")
}

}

You can call the testValue function in the onBlur event handler of a form’s
Text object, as shown in the following example:

Name: <INPUT TYPE="text" NAME="userName"
onBlur="testValue(userName.value)">

See also Window.confirm , Window.prompt

back

Undoes the last history step in any frame within the top-level window;
equivalent to the user pressing the browser’s Back button.

Syntax back()

Parameters None

Description Calling the back method is equivalent to the user pressing the browser’s Back
button. That is, back undoes the last step anywhere within the top-level
window, whether it occurred in the same frame or in another frame in the tree
of frames loaded from the top-level window. In contrast, the history object's
back method backs up the current window or frame history one step.

For example, consider the following scenario. While in Frame A, you click the
Forward button to change Frame A’s content. You then move to Frame B and
click the Forward button to change Frame B’s content. If you move back to
Frame A and call FrameA.back() , the content of Frame B changes (clicking the
Back button behaves the same).

Method of Window

Implemented in Navigator 4.0
318 JavaScript Reference

Window
If you want to navigate Frame A separately, use FrameA.history.back() .

Examples The following custom buttons perform the same operation as the browser’s
Back button:

<P><INPUT TYPE="button" VALUE="< Go Back"
onClick="history.back()">

<P><INPUT TYPE="button" VALUE="> Go Back"
onClick="myWindow.back()">

See also Window.forward , History.back

blur

Removes focus from the specified object.

Syntax blur()

Parameters None

Description Use the blur method to remove focus from a specific window or frame.
Removing focus from a window sends the window to the background in most
windowing systems.

See also Window.focus

captureEvents

Sets the window to capture all events of the specified type.

Syntax captureEvents(eventType)

Parameters

Method of Window

Implemented in Navigator 2.0

Method of Window

Implemented in Navigator 4.0

eventType The type of event to be captured. The available event types are
listed with the event object.
Chapter 6, Window 319

Window
Security When a window with frames wants to capture events in pages loaded from
different locations (servers), you need to use captureEvents in a signed script
and precede it with enableExternalCapture . You must have the
UniversalBrowserWrite privilege. For more information and an example, see
enableExternalCapture . For information on security in Navigator 4.0, see
Chapter 7, “JavaScript Security,” in the JavaScript Guide.

See also captureEvents works in tandem with releaseEvents , routeEvent , and
handleEvent . For more information, see “Events in Navigator 4.0” on
page 482.

clearInterval

Cancels a timeout that was set with the setInterval method.

Syntax clearInterval(intervalID)

Parameters

Description See setInterval .

Examples See setInterval .

See also Window.setInterval

clearTimeout

Cancels a timeout that was set with the setTimeout method.

Syntax clearTimeout(timeoutID)

Method of Window

Implemented in Navigator 4.0

intervalID Timeout setting that was returned by a previous call to the
setInterval method.

Method of Window

Implemented in Navigator 2.0
320 JavaScript Reference

Window
Parameters

Description See setTimeout .

Examples See setTimeout .

See also Window.clearInterval , Window.setTimeout

close

Closes the specified window.

Syntax close()

Parameters None

Security Navigator 4.0: To unconditionally close a window, you need the
UniversalBrowserWrite privilege. For information on security in
Navigator 4.0, see Chapter 7, “JavaScript Security,” in the JavaScript Guide.

Description The close method closes the specified window. If you call close without
specifying a windowReference , JavaScript closes the current window.

The close method closes only windows opened by JavaScript using the open
method. If you attempt to close any other window, a confirm is generated,
which lets the user choose whether the window closes. This is a security
feature to prevent “mail bombs” containing self.close() . However, if the
window has only one document (the current one) in its session history, the
close is allowed without any confirm. This is a special case for one-off windows
that need to open other windows and then dispose of themselves.

In event handlers, you must specify window.close() instead of simply using
close() . Due to the scoping of static objects in JavaScript, a call to close()
without specifying an object name is equivalent to document.close() .

timeoutID A timeout setting that was returned by a previous call to the
setTimeout method.

Method of Window

Implemented in Navigator 2.0: closes any window.
Navigator 3.0: closes only windows opened by JavaScript.
Navigator 4.0: must use signed scripts to unconditionally close a
window.
Chapter 6, Window 321

Window
Examples Example 1. Any of the following examples closes the current window:

window.close()
self.close()
close()

Example 2: Close the main browser window. The following code closes the
main browser window.

top.opener.close()

Example 3. The following example closes the messageWin window:

messageWin.close()

This example assumes that the window was opened in a manner similar to the
following:

messageWin=window.open("")

See also Window.closed , Window.open

confirm

Displays a Confirm dialog box with the specified message and OK and Cancel
buttons.

Syntax confirm("message")

Parameters

Description A confirm dialog box looks as follows:

Method of Window

Implemented in Navigator 2.0

message A string.
322 JavaScript Reference

Window
Use the confirm method to ask the user to make a decision that requires either
an OK or a Cancel. The message argument specifies a message that prompts
the user for the decision. The confirm method returns true if the user chooses
OK and false if the user chooses Cancel.

You cannot specify a title for a confirm dialog box, but you can use the open
method to create your own confirm dialog. See open .

Examples This example uses the confirm method in the confirmCleanUp function to
confirm that the user of an application really wants to quit. If the user chooses
OK, the custom cleanUp function closes the application.

function confirmCleanUp() {
if (confirm("Are you sure you want to quit this application?")) {

cleanUp()
}

}

You can call the confirmCleanUp function in the onClick event handler of a
form’s push button, as shown in the following example:

<INPUT TYPE="button" VALUE="Quit" onClick="confirmCleanUp()">

See also Window.alert , Window.prompt

disableExternalCapture

Disables external event capturing set by the enableExternalCapture method.

Syntax disableExternalCapture()

Parameters None

Description See enableExternalCapture .

Method of Window

Implemented in Navigator 4.0
Chapter 6, Window 323

Window
enableExternalCapture

Allows a window with frames to capture events in pages loaded from different
locations (servers).

Syntax enableExternalCapture()

Parameters None

Description Use this method in a signed script requesting UniversalBrowserWrite
privileges, and use it before calling the captureEvents method.

If Communicator sees additional scripts that cause the set of principals in effect
for the container to be downgraded, it disables external capture of events.
Additional calls to enableExternalCapture (after acquiring the
UniversalBrowserWrite privilege under the reduced set of principals) can be
made to enable external capture again.

Example In the following example, the window is able to capture all Click events that
occur across its frames.

<SCRIPT ARCHIVE="myArchive.jar" ID="2">
function captureClicks() {

netscape.security.PrivilegeManager.enablePrivilege(
"UniversalBrowserWrite");

enableExternalCapture();
captureEvents(Event.CLICK);
...

}

</SCRIPT>

See also Window.disableExternalCapture , Window.captureEvents

find

Finds the specified text string in the contents of the specified window.

Method of Window

Implemented in Navigator 4.0

Method of Window

Implemented in Navigator 4.0
324 JavaScript Reference

Window
Syntax find(string, casesensitive , backward)

Parameters

Returns true if the string is found; otherwise, false.

Description When a string is specified, the browser performs a case-insensitive, forward
search. If a string is not specified, the method displays the Find dialog box,
allowing the user to enter a search string.

focus

Gives focus to the specified object.

Syntax focus()

Parameters None

Description Use the focus method to navigate to a specific window or frame, and give it
focus. Giving focus to a window brings the window forward in most
windowing systems.

In Navigator 3.0, on some platforms, the focus method gives focus to a frame
but the focus is not visually apparent (for example, the frame’s border is not
darkened).

Examples In the following example, the checkPassword function confirms that a user has
entered a valid password. If the password is not valid, the focus method
returns focus to the Password object and the select method highlights it so
the user can reenter the password.

function checkPassword(userPass) {
if (badPassword) {

alert("Please enter your password again.")
userPass.focus()

string (Optional) The text string for which to search.

casesensitive (Optional) Boolean value. If true, specifies a case-sensitive search. If
you supply this parameter, you must also supply backward .

backward (Optional) Boolean. If true, specifies a backward search. If you supply
this parameter, you must also supply casesensitive .

Method of Window

Implemented in Navigator 3.0
Chapter 6, Window 325

Window
userPass.select()
}

}

This example assumes that the Password object is defined as

<INPUT TYPE="password" NAME="userPass">

See also Window.blur

forward

Points the browser to the next URL in the current history list; equivalent to the
user pressing the browser’s Forward button

Syntax history.forward()

forward()

Parameters None

Description This method performs the same action as a user choosing the Forward button
in the browser. The forward method is the same as history.go(1) .

When used with the Frame object, forward behaves as follows: While in Frame
A, you click the Back button to change Frame A’s content. You then move to
Frame B and click the Back button to change Frame B’s content. If you move
back to Frame A and call FrameA.forward() , the content of Frame B changes
(clicking the Forward button behaves the same). If you want to navigate Frame
A separately, use FrameA.history.forward() .

Examples The following custom buttons perform the same operation as the browser’s
Forward button:

<P><INPUT TYPE="button" VALUE="< Go Forth"
onClick="history.forward()">

<P><INPUT TYPE="button" VALUE="> Go Forth"
onClick="myWindow.forward()">

See also Window.back

Method of Window

Implemented in Navigator 4.0
326 JavaScript Reference

Window
handleEvent

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description handleEvent works in tandem with captureEvents , releaseEvents , and
routeEvent . For more information, see “Events in Navigator 4.0” on page 482.

home

Points the browser to the URL specified in preferences as the user’s home page;
equivalent to the user pressing the browser’s Home button.

Syntax home()

Parameters None

Description This method performs the same action as a user choosing the Home button in
the browser.

moveBy

Moves the window relative to its current position, moving the specified number
of pixels.

Syntax moveBy(horizontal, vertical)

Method of Window

Implemented in Navigator 4.0

event The name of an event for which the specified object has an event handler.

Method of Window

Implemented in Navigator 4.0

Method of Window

Implemented in Navigator 4.0
Chapter 6, Window 327

Window
Parameters

Description This method moves the window by adding or subtracting the specified number
of pixels to the current location.

Security Exceeding any of the boundaries of the screen (to hide some or all of a
window) requires signed JavaScript, so a window won’t move past the screen
boundaries. You need the UniversalBrowserWrite privilege for this. For
information on security in Navigator 4.0, see Chapter 7, “JavaScript Security,” in
the JavaScript Guide.

Examples: To move the current window 5 pixels up towards the top of the screen (x-axis),
and 10 pixels towards the right (y-axis) of the current window position, use this
statement:

self.moveBy(-5,10); // relative positioning

See also Window.moveTo

moveTo

Moves the top-left corner of the window to the specified screen coordinates.

Syntax moveTo(x-coordinate, y-coordinate)

Parameters

Description This method moves the window to the absolute pixel location indicated by its
parameters. The origin of the axes is at absolute position (0,0); this is the upper
left-hand corner of the display.

horizontal The number of pixels by which to move the window horizontally.

vertical The number of pixels by which to move the window vertically.

Method of Window

Implemented in Navigator 4.0

x-coordinate The left edge of the window in screen coordinates.

y-coordinate The top edge of the window in screen coordinates.
328 JavaScript Reference

Window
Security Exceeding any of the boundaries of the screen (to hide some or all of a
window) requires signed JavaScript, so a window won’t move past the screen
boundaries. You need the UniversalBrowserWrite privilege for this. For
information on security in Navigator 4.0, see Chapter 7, “JavaScript Security,” in
the JavaScript Guide.

Examples: To move the current window to 25 pixels from the top boundary of the screen
(x-axis), and 10 pixels from the left boundary of the screen (y-axis), use this
statement:

self.moveTo(25,10); // absolute positioning

See also Window.moveBy

open

Opens a new web browser window.

Syntax open(URL, windowName, windowFeatures)

Parameters

Description In event handlers, you must specify window.open() instead of simply using
open() . Due to the scoping of static objects in JavaScript, a call to open()
without specifying an object name is equivalent to document.open() .

The open method opens a new Web browser window on the client, similar to
choosing New Navigator Window from the File menu of the browser. The URL
argument specifies the URL contained by the new window. If URL is an empty
string, a new, empty window is created.

Method of Window

Implemented in Navigator 2.0
Navigator 4.0: added several new windowFeatures

URL A string specifying the URL to open in the new window. See the
Location object for a description of the URL components.

windowName A string specifying the window name to use in the TARGET
attribute of a FORM or A tag. windowName can contain only
alphanumeric or underscore (_) characters.

windowFeatures (Optional) A string containing a comma-separated list determining
whether or not to create various standard window features. These
options are described below.
Chapter 6, Window 329

Window
You can use open on an existing window, and if you pass the empty string for
the URL, you will get a reference to the existing window, but not load anything
into it. You can, for example, then look for properties in the window.

windowFeatures is an optional string containing a comma-separated list of
options for the new window (do not include any spaces in this list). After a
window is open, you cannot use JavaScript to change the windowFeatures.
The features you can specify are:

alwaysLowere
d

(Navigator 4.0) If yes, creates a new window that floats below
other windows, whether it is active or not. This is a secure feature
and must be set in signed scripts.

alwaysRaised (Navigator 4.0) If yes, creates a new window that floats on top of
other windows, whether it is active or not. This is a secure feature
and must be set in signed scripts.

dependent (Navigator 4.0) If yes, creates a new window as a child of the
current window. A dependent window closes when its parent
window closes. On Windows platforms, a dependent window does
not show on the task bar.

directories If yes, creates the standard browser directory buttons, such as
What’s New and What’s Cool.

height (Navigator 2.0 and 3.0) Specifies the height of the window in
pixels.

hotkeys (Navigator 4.0) If no (or 0), disables most hotkeys in a new
window that has no menu bar. The security and quit hotkeys
remain enabled.

innerHeight (Navigator 4.0) Specifies the height, in pixels, of the window's
content area. To create a window smaller than 100 x 100 pixels, set
this feature in a signed script. This feature replaces height , which
remains for backwards compatibility.

innerWidth (Navigator 4.0) Specifies the width, in pixels, of the window's
content area. To create a window smaller than 100 x 100 pixels, set
this feature in a signed script. This feature replaces width , which
remains for backwards compatibility.

location If yes, creates a Location entry field.

menubar If yes, creates the menu at the top of the window.

outerHeight (Navigator 4.0) Specifies the vertical dimension, in pixels, of the
outside boundary of the window. To create a window smaller than
100 x 100 pixels, set this feature in a signed script.
330 JavaScript Reference

Window
Many of these features (as noted above) can either be yes or no. For these
features, you can use 1 instead of yes and 0 instead of no. If you want to turn a
feature on, you can also simply list the feature name in the windowFeatures
string.

If windowName does not specify an existing window and you do not supply the
windowFeatures parameter, all of the features which have a yes/no choice are
yes by default. However, if you do supply the windowFeatures parameter,
then the titlebar and hotkeys are still yes by default, but the other features
which have a yes/no choice are no by default.

For example, all of the following statements turn on the toolbar option and turn
off all other Boolean options:

open("", "messageWindow", "toolbar")
open("", "messageWindow", "toolbar=yes")
open("", "messageWindow", "toolbar=1")

resizable If yes, allows a user to resize the window.

screenX (Navigator 4.0) Specifies the distance the new window is placed
from the left side of the screen. To place a window offscreen, set
this feature in a signed scripts.

screenY (Navigator 4.0) Specifies the distance the new window is placed
from the top of the screen. To place a window offscreen, set this
feature in a signed scripts.

scrollbars If yes, creates horizontal and vertical scrollbars when the
Document grows larger than the window dimensions.

status If yes, creates the status bar at the bottom of the window.

titlebar (Navigator 4.0) If yes, creates a window with a title bar. To set the
titlebar to no, set this feature in a signed script.

toolbar If yes, creates the standard browser toolbar, with buttons such as
Back and Forward.

width (Navigator 2.0 and 3.0) Specifies the width of the window in pixels.

z-lock (Navigator 4.0) If yes, creates a new window that does not rise
above other windows when activated. This is a secure feature and
must be set in signed scripts.
Chapter 6, Window 331

Window
The following statement turn on the location and directories options and turns
off all other Boolean options:

open("", "messageWindow", "toolbar,directories=yes")

How the alwaysLowered , alwaysRaised , and z-lock features behave
depends on the windowing hierarchy of the platform. For example, on
Windows, an alwaysLowered or z-locked browser window is below all
windows in all open applications. On Macintosh, an alwaysLowered browser
window is below all browser windows, but not necessarily below windows in
other open applications. Similarly for an alwaysRaised window.

You may use open to open a new window and then use open on that window
to open another window, and so on. In this way, you can end up with a chain
of opened windows, each of which has an opener property pointing to the
window that opened it.

Communicator allows a maximum of 100 windows to be around at once. If you
open window2 from window1 and then are done with window1 , be sure to set
the opener property of window2 to null . This allows JavaScript to garbage
collect window1 . If you do not set the opener property to null , the window1
object remains, even though it’s no longer really needed.

Security To perform the following operations using the specified screen features, you
need the UniversalBrowserWrite privilege:

• To create a window smaller than 100 x 100 pixels or larger than the screen
can accommodate by using innerWidth , innerHeight , outerWidth , and
outerHeight .

• To place a window off screen by using screenX and screenY .

• To create a window without a titlebar by using titlebar .

• To use alwaysRaised , alwaysLowered , or z-lock for any setting.

For information on security in Navigator 4.0, see Chapter 7, “JavaScript
Security,” in the JavaScript Guide.

Examples Example 1. In the following example, the windowOpener function opens a
window and uses write methods to display a message:

function windowOpener() {
msgWindow=window.open("","displayWindow","menubar=yes")
msgWindow.document.write

("<HEAD><TITLE>Message window</TITLE></HEAD>")
332 JavaScript Reference

Window
msgWindow.document.write
("<CENTER><BIG>Hello, world!</BIG></CENTER>")

}

Example 2. The following is an onClick event handler that opens a new client
window displaying the content specified in the file sesame.html . The window
opens with the specified option settings; all other options are false because
they are not specified.

<FORM NAME="myform">
<INPUT TYPE="button" NAME="Button1" VALUE="Open Sesame!"

onClick="window.open ('sesame.html', 'newWin',
'scrollbars=yes,status=yes,width=300,height=300')">

</FORM>

See also Window.close

print

Prints the contents of the window.

Syntax print()

Parameters None

prompt

Displays a Prompt dialog box with a message and an input field.

Syntax prompt(message, inputDefault)

Parameters

Method of Window

Implemented in Navigator 4.0

Method of Window

Implemented in Navigator 2.0

message A string to be displayed as the message.

inputDefault (Optional) A string or integer representing the default value of the
input field.
Chapter 6, Window 333

Window
Description A prompt dialog box looks as follows:

Use the prompt method to display a dialog box that receives user input. If you
do not specify an initial value for inputDefault , the dialog box displays
<undefined> .

You cannot specify a title for a prompt dialog box, but you can use the open
method to create your own prompt dialog. See open .

Examples prompt("Enter the number of cookies you want to order:", 12)

See also Window.alert , Window.confirm

releaseEvents

Sets the window or document to release captured events of the specified type,
sending the event to objects further along the event hierarchy.

Note If the original target of the event is a window, the window receives the event
even if it is set to release that type of event.

Syntax releaseEvents(eventType)

Parameters

Description releaseEvents works in tandem with captureEvents , routeEvent , and
handleEvent . For more information, see “Events in Navigator 4.0” on
page 482.

Method of Window

Implemented in Navigator 4.0

eventType Type of event to be captured.
334 JavaScript Reference

Window
resizeBy

Resizes an entire window by moving the window’s bottom-right corner by the
specified amount.

Syntax resizeBy(horizontal, vertical)

Parameters

Description This method changes the window’s dimensions by setting its outerWidth and
outerHeight properties. The upper left-hand corner remains anchored and the
lower right-hand corner moves. resizeBy moves the window by adding or
subtracting the specified number of pixels to that corner’s current location.

Security Exceeding any of the boundaries of the screen (to hide some or all of a
window) requires signed JavaScript, so a window won’t move past the screen
boundaries. In addition, windows have an enforced minimum size of 100 x 100
pixels; resizing a window to be smaller than this minimum requires signed
JavaScript. You need the UniversalBrowserWrite privilege for this. For
information on security in Navigator 4.0, see Chapter 7, “JavaScript Security,” in
the JavaScript Guide.

Examples To make the current window 5 pixels narrower and 10 pixels taller than its
current dimensions, use this statement:

self.resizeBy(-5,10); // relative positioning

See also Window.resizeTo

resizeTo

Resizes an entire window to the specified pixel dimensions.

Method of Window

Implemented in Navigator 4.0

horizontal The number of pixels by which to resize the window horizontally.

vertical The number of pixels by which to resize the window vertically.

Method of Window

Implemented in Navigator 4.0
Chapter 6, Window 335

Window
Syntax resizeTo(outerWidth, outerHeight)

Parameters

Description This method changes the window’s dimensions by setting its outerWidth and
outerHeight properties. The upper left-hand corner remains anchored and the
lower right-hand corner moves. resizeBy moves to the specified position. The
origin of the axes is at absolute position (0,0); this is the upper left-hand corner
of the display.

Security Exceeding any of the boundaries of the screen (to hide some or all of a
window) requires signed JavaScript, so a window won’t move past the screen
boundaries. In addition, windows have an enforced minimum size of 100 x 100
pixels; resizing a window to be smaller than this minimum requires signed
JavaScript. You need the UniversalBrowserWrite privilege for this. For
information on security in Navigator 4.0, see Chapter 7, “JavaScript Security,” in
the JavaScript Guide.

Examples To make the window 225 pixels wide and 200 pixels tall, use this statement:

self.resizeTo(225,200); // absolute positioning

See also Window.resizeBy

routeEvent

Passes a captured event along the normal event hierarchy.

Syntax routeEvent(event)

Parameters

Description If a subobject (document or layer) is also capturing the event, the event is sent
to that object. Otherwise, it is sent to its original target.

outerWidth An integer representing the window’s width in pixels.

outerHeight An integer representing the window’s height in pixels.

Method of Window

Implemented in Navigator 4.0

event Name of the event to be routed.
336 JavaScript Reference

Window
routeEvent works in tandem with captureEvents , releaseEvents , and
handleEvent . For more information, see “Events in Navigator 4.0” on
page 482.

scroll

Scrolls a window to a specified coordinate.

Description In Navigator 4.0, scroll is no longer used and has been replaced by
scrollTo . scrollTo extends the capabilities of scroll . scroll remains for
backward compatibility.

scrollBy

Scrolls the viewing area of a window by the specified amount.

Syntax scrollBy(horizontal, vertical)

Parameters

Description This method scrolls the content in the window if portions that can’t be seen
exist outside of the window. scrollBy scrolls the window by adding or
subtracting the specified number of pixels to the current scrolled location.

For this method to have an effect the visible property of
Window.scrollbars must be true.

Examples To scroll the current window 5 pixels towards the left and 30 pixels down from
the current position, use this statement:

self.scrollBy(-5,30); // relative positioning

See also Window.scrollTo

Method of Window

Implemented in Navigator 3.0; deprecated in 4.0

Method of Window

Implemented in Navigator 4.0

horizontal The number of pixels by which to scroll the viewing area horizontally.

vertical The number of pixels by which to scroll the viewing area vertically.
Chapter 6, Window 337

Window
scrollTo

Scrolls the viewing area of the window so that the specified point becomes the
top-left corner.

Syntax scrollTo(x-coordinate, y-coordinate)

Parameters

Description scrollTo replaces scroll . scroll remains for backward compatibility.

The scrollTo method scrolls the content in the window if portions that can’t
be seen exist outside of the window. For this method to have an effect the
visible property of Window.scrollbars must be true.

Examples Example 1: Scroll the current viewing area. To scroll the current window to
the leftmost boundary and 20 pixels down from the top of the window, use this
statement:

self.scrollTo(0,20); // absolute positioning

Example 2: Scroll a different viewing area. The following code, which
exists in one frame, scrolls the viewing area of a second frame. Two Text
objects let the user specify the x and y coordinates. When the user clicks the
Go button, the document in frame2 scrolls to the specified coordinates.

<SCRIPT>
function scrollIt(form) {

var x = parseInt(form.x.value)
var y = parseInt(form.y.value)
parent.frame2.scrollTo(x, y)

}
</SCRIPT>
<BODY>

<FORM NAME="myForm">
<P>Specify the coordinates to scroll to:

Horizontal:

Method of Window

Implemented in Navigator 4.0

x-coordinate An integer representing the x-coordinate of the viewing area in
pixels.

y-coordinate An integer representing the y-coordinate of the viewing area in
pixels.
338 JavaScript Reference

Window
<INPUT TYPE="text" NAME=x VALUE="0" SIZE=4>

Vertical:
<INPUT TYPE="text" NAME=y VALUE="0" SIZE=4>

<INPUT TYPE="button" VALUE="Go"

onClick="scrollIt(document.myForm)">
</FORM>

See also Window.scrollBy

setInterval

Evaluates an expression or calls a function every time a specified number of
milliseconds elapses, until canceled by a call to clearInterval .

Syntax setInterval(expression, msec)
setInterval(function, msec, arg1, ..., arg N)

Parameters

Description The timeouts continue to fire until the associated window or frame is destroyed
or the interval is canceled using the clearInterval method.

Examples <<<Redo for setInterval>>>

Example 1. The following example displays an alert message five seconds
(5,000 milliseconds) after the user clicks a button. If the user clicks the second
button before the alert message is displayed, the timeout is canceled and the
alert does not display.

<SCRIPT LANGUAGE="JavaScript">
function displayAlert() {

alert("5 seconds have elapsed since the button was clicked.")
}

Method of Window

Implemented in Navigator 4.0

function Any function.

expression A string containing a JavaScript expression. The expression must be
quoted; otherwise, setInterval calls it immediately. For example,
setInterval("calcnum(3, 2)", 25) .

msec A numeric value or numeric string, in millisecond units.

arg1, ...,
argn

(Optional) The arguments, if any, passed to function .
Chapter 6, Window 339

Window
</SCRIPT>
<BODY>
<FORM>
Click the button on the left for a reminder in 5 seconds;
click the button on the right to cancel the reminder before
it is displayed.
<P>
<INPUT TYPE="button" VALUE="5-second reminder"

NAME="remind_button"
onClick="timerID=setTimeout('displayAlert()',5000)">

<INPUT TYPE="button" VALUE="Clear the 5-second reminder"
NAME="remind_disable_button"
onClick="clearTimeout(timerID)">

</FORM>
</BODY>

Example 2. The following example displays the current time in a Text object.
The showtime function, which is called recursively, uses the setTimeout
method to update the time every second.

<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!--
var timerID = null
var timerRunning = false
function stopclock(){

if(timerRunning)
clearTimeout(timerID)

timerRunning = false
}
function startclock(){

// Make sure the clock is stopped
stopclock()
showtime()

}
function showtime(){

var now = new Date()
var hours = now.getHours()
var minutes = now.getMinutes()
var seconds = now.getSeconds()
var timeValue = "" + ((hours > 12) ? hours - 12 : hours)
timeValue += ((minutes < 10) ? ":0" : ":") + minutes
timeValue += ((seconds < 10) ? ":0" : ":") + seconds
timeValue += (hours >= 12) ? " P.M." : " A.M."
document.clock.face.value = timeValue
timerID = setTimeout("showtime()",1000)
timerRunning = true

}
//-->
340 JavaScript Reference

Window
</SCRIPT>
</HEAD>

<BODY onLoad="startclock()">
<FORM NAME="clock" onSubmit="0">

<INPUT TYPE="text" NAME="face" SIZE=12 VALUE ="">
</FORM>
</BODY>

See also Window.clearInterval , Window.setTimeout

setTimeout

Evaluates an expression or calls a function once after a specified number of
milliseconds elapses.

Syntax setTimeout(expression, msec)
setTimeout(function, msec, arg1, ..., arg N)

Parameters

Description The setTimeout method evaluates an expression or calls a function after a
specified amount of time. It does not act repeatedly. For example, if a
setTimeout method specifies five seconds, the expression is evaluated or the
function is called after five seconds, not every five seconds. For repetitive
timeouts, use the setInterval method.

setTimeout does not stall the script. The script continues immediately (not
waiting for the timeout to expire). The call simply schedules an additional
future event.

Method of Window

Implemented in Navigator 2.0: Evaluating an expression.
Navigator 4.0: Calling a function.

expression A string containing a JavaScript expression. The expression must be
quoted; otherwise, setTimeout calls it immediately. For example,
setTimeout("calcnum(3, 2)", 25) .

msec A numeric value or numeric string, in millisecond units.

function Any function.

arg1, ...,
arg N

(Optional) The arguments, if any, passed to function .
Chapter 6, Window 341

Window
Examples Example 1. The following example displays an alert message five seconds
(5,000 milliseconds) after the user clicks a button. If the user clicks the second
button before the alert message is displayed, the timeout is canceled and the
alert does not display.

<SCRIPT LANGUAGE="JavaScript">
function displayAlert() {

alert("5 seconds have elapsed since the button was clicked.")
}
</SCRIPT>
<BODY>
<FORM>
Click the button on the left for a reminder in 5 seconds;
click the button on the right to cancel the reminder before
it is displayed.
<P>
<INPUT TYPE="button" VALUE="5-second reminder"

NAME="remind_button"
onClick="timerID=setTimeout('displayAlert()',5000)">

<INPUT TYPE="button" VALUE="Clear the 5-second reminder"
NAME="remind_disable_button"
onClick="clearTimeout(timerID)">

</FORM>
</BODY>

Example 2. The following example displays the current time in a Text object.
The showtime function, which is called recursively, uses the setTimeout
method to update the time every second.

<HEAD>
<SCRIPT LANGUAGE="JavaScript">
<!--
var timerID = null
var timerRunning = false
function stopclock(){

if(timerRunning)
clearTimeout(timerID)

timerRunning = false
}
function startclock(){

// Make sure the clock is stopped
stopclock()
showtime()

}
function showtime(){

var now = new Date()
var hours = now.getHours()
var minutes = now.getMinutes()
var seconds = now.getSeconds()
var timeValue = "" + ((hours > 12) ? hours - 12 : hours)
342 JavaScript Reference

Window
timeValue += ((minutes < 10) ? ":0" : ":") + minutes
timeValue += ((seconds < 10) ? ":0" : ":") + seconds
timeValue += (hours >= 12) ? " P.M." : " A.M."
document.clock.face.value = timeValue
timerID = setTimeout("showtime()",1000)
timerRunning = true

}
//-->
</SCRIPT>
</HEAD>

<BODY onLoad="startclock()">
<FORM NAME="clock" onSubmit="0">

<INPUT TYPE="text" NAME="face" SIZE=12 VALUE ="">
</FORM>
</BODY>

See also Window.clearTimeout , Window.setInterval

stop

Stops the current download.

Syntax stop()

Parameters None

Definition This method performs the same action as a user choosing the Stop button in
the browser.

Method of Window

Implemented in Navigator 4.0
Chapter 6, Window 343

Frame
Frame
A window can display multiple, independently scrollable frames on a single
screen, each with its own distinct URL. These frames are created using the
FRAME tag inside a FRAMESET tag. Frames can point to different URLs and be
targeted by other URLs, all within the same screen. A series of frames makes up
a page. The Frame object is a convenience for thinking about the objects that
constitute these frames. However, JavaScript actually represents a frame using a
Window object. Every Frame object is a Window object, and has all the methods
and properties of a Window object. There are a small number of minor
differences between a window that is a frame and a top-level window. See
Window for complete information on frames.

Location
Contains information on the current URL.

Created by Location objects are predefined JavaScript objects that you access through the
location property of a Window object:

Description The location object represents the complete URL associated with a given
Window object. Each property of the location object represents a different
portion of the URL.

In general, a URL has this form:

protocol//host:port/pathname#hash?search

For example:

http://home.netscape.com/assist/extensions.html#topic1?x=7&y=2

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added blur and focus methods; added onBlur
and onFocus event handlers

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added reload , replace methods
344 JavaScript Reference

Location
These parts serve the following purposes:

• protocol represents the beginning of the URL, up to and including the first
colon.

• host represents the host and domain name, or IP address, of a network
host.

• port represents the communications port that the server uses for
communications.

• pathname represents the URL-path portion of the URL.

• hash represents an anchor name fragment in the URL, including the hash
mark (#). This property applies to HTTP URLs only.

• search represents any query information in the URL, including the question
mark (?). This property applies to HTTP URLs only. The search string
contains variable and value pairs; each pair is separated by an ampersand
(&).

A Location object has a property for each of these parts of the URL. See the
individual properties for more information. A Location object has two other
properties not shown here:

• href represents a complete URL.

• hostname represents the concatenation host :port .

If you assign a string to the location property of an object, JavaScript creates a
location object and assigns that string to its href property. For example, the
following two statements are equivalent and set the URL of the current window
to the Netscape home page:

window.location.href="http://home.netscape.com/"
window.location="http://home.netscape.com/"

The location object is contained by the window object and is within its scope.
If you refer to a location object without specifying a window, the location
object represents the current location. If you refer to a location object and
specify a window name, as in windowReference.location , the location
object represents the location of the specified window.
Chapter 6, Window 345

Location
In event handlers, you must specify window.location instead of simply using
location . Due to the scoping of static objects in JavaScript, a call to location
without specifying an object name is equivalent to document.location , which
is a synonym for document.URL .

Location is not a property of the document object; its equivalent is the
document.URL property. The document.location property, which is a
synonym for document.URL , will be removed in a future release.

How documents are loaded when location is set

When you set the location object or any of its properties except hash,
whether a new document is loaded depends on which version of the browser
you are running:

• In Navigator 2.0, setting location does a conditional (“If-modified-since”)
HTTP GET operation, which returns no data from the server unless the
document has been modified since the last version downloaded.

• In Navigator 3.0 and later, the effect of setting location depends on the
user’s setting for comparing a document to the original over the network.
The user interface option for setting this preference differs in browser
versions. The user decides whether to check a document in cache every
time it is accessed, once per session, or never. The document is reloaded
from cache if the user sets never or once per session; the document is
reloaded from the server only if the user chooses every time.

Syntax for common URL types

When you specify a URL, you can use standard URL formats and JavaScript
statements. Table 6.2 shows the syntax for specifying some of the most
common types of URLs.

Table 6.2 URL syntax.

URL type Protocol Example

JavaScript code javascript: javascript:history.go(-1)

Navigator source
viewer

view-source: view-source:wysiwyg://0/file:/c|/
temp/genhtml.html

Navigator info about: about:cache

World Wide Web http: http://home.netscape.com/
346 JavaScript Reference

Location
The javascript: protocol evaluates the expression after the colon (:), if there
is one, and loads a page containing the string value of the expression, unless it
is undefined. If the expression evaluates to undefined (by calling a void
function, for example javascript:void(0)), no new page loads. Note that
loading a new page over your script’s page clears the page’s variables,
functions, and so on.

The view-source: protocol displays HTML code that was generated with
JavaScript document.write and document.writeln methods. For information
on printing and saving generated HTML, see write .

The about: protocol provides information on Navigator and has the following
syntax:

about:
about:cache
about:plugins

• about: by itself is the same as choosing About Communicator from the
Navigator Help menu.

• about:cache displays disk-cache statistics.

• about:plugins displays information about plug-ins you have configured.
This is the same as choosing About Plug-ins from the Navigator Help menu.

File file:/ file:///javascript/methods.html

FTP ftp: ftp://ftp.mine.com/home/mine

MailTo mailto: mailto:info@netscape.com

Usenet news: news://news.scruznet.com/
comp.lang.javascript

Gopher gopher: gopher.myhost.com

Table 6.2 URL syntax. (Continued)

URL type Protocol Example
Chapter 6, Window 347

Location
Property
Summary

Method Summary

Examples Example 1. The following two statements are equivalent and set the URL of
the current window to the Netscape home page:

window.location.href="http://home.netscape.com/"
window.location="http://home.netscape.com/"

Example 2. The following statement sets the URL of a frame named frame2 to
the Sun home page:

parent.frame2.location.href="http://www.sun.com/"

See also the examples for Anchor .

See also History , document.URL

Property Description

hash Specifies an anchor name in the URL.

host Specifies the host and domain name, or IP address, of a network
host.

hostname Specifies the host:port portion of the URL.

href Specifies the entire URL.

pathname Specifies the URL-path portion of the URL.

port Specifies the communications port that the server uses.

protocol Specifies the beginning of the URL, including the colon.

search Specifies a query.

Method Description

reload Forces a reload of the window’s current document.

replace Loads the specified URL over the current history entry.
348 JavaScript Reference

Location
Properties

hash

A string beginning with a hash mark (#) that specifies an anchor name in the
URL.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The hash property specifies a portion of the URL. This property applies to
HTTP URLs only.

You can set the hash property at any time, although it is safer to set the href
property to change a location. If the hash that you specify cannot be found in
the current location, you get an error.

Setting the hash property navigates to the named anchor without reloading the
document. This differs from the way a document is loaded when other
location properties are set (see “How documents are loaded when location is
set” on page 346).

See RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the hash.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.href = " +
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.hash = " +
newWindow.location.hash + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

Property of Location

Implemented in Navigator 2.0
Chapter 6, Window 349

Location
newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.hash = #checkbox_object

See also Location.host , Location.hostname , Location.href , Location.pathname ,
Location.port , Location.protocol , Location.search

host

A string specifying the server name, subdomain, and domain name.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The host property specifies a portion of a URL. The host property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon. When
the port property is null, the host property is the same as the hostname
property.

You can set the host property at any time, although it is safer to set the href
property to change a location. If the host that you specify cannot be found in
the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the hostname and port.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.href = " +
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.host = " +
newWindow.location.host + "<P>")

msgWindow.document.close()

Property of Location

Implemented in Navigator 2.0
350 JavaScript Reference

Location
The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.host = home.netscape.com

See also Location.hash , Location.hostname , Location.href , Location.pathname ,
Location.port , Location.protocol , Location.search

hostname

A string containing the full hostname of the server, including the server name,
subdomain, domain, and port number.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The hostname property specifies a portion of a URL. The hostname property is
the concatenation of the host and port properties, separated by a colon.
When the port property is 80 (the default), the host property is the same as
the hostname property.

You can set the hostname property at any time, although it is safer to set the
href property to change a location. If the hostname that you specify cannot be
found in the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the hostname.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.href = " +
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.hostName = " +

Property of Location

Implemented in Navigator 2.0
Chapter 6, Window 351

Location
newWindow.location.hostName + "<P>")
msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.hostName = home.netscape.com

See also Location.hash , Location.host , Location.href , Location.pathname ,
Location.port , Location.protocol , Location.search

href

A string specifying the entire URL.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The href property specifies the entire URL. Other location object properties
are substrings of the href property. If you want to change the URL associated
with a window, you should do so by changing the href property; this correctly
updates all of the other properties.

You can set the href property at any time.

Omitting a property name from the location object is equivalent to specifying
location.href . For example, the following two statements are equivalent and
set the URL of the current window to the Netscape home page:

window.location.href="http://home.netscape.com/"
window.location="http://home.netscape.com/"

See RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the URL.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display all the properties of newWindow.location in a window
called msgWindow.

Property of Location

Implemented in Navigator 2.0
352 JavaScript Reference

Location
newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.href = " +
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.protocol = " +
newWindow.location.protocol + "<P>")

msgWindow.document.write("newWindow.location.host = " +
newWindow.location.host + "<P>")

msgWindow.document.write("newWindow.location.hostName = " +
newWindow.location.hostName + "<P>")

msgWindow.document.write("newWindow.location.port = " +
newWindow.location.port + "<P>")

msgWindow.document.write("newWindow.location.pathname = " +
newWindow.location.pathname + "<P>")

msgWindow.document.write("newWindow.location.hash = " +
newWindow.location.hash + "<P>")

msgWindow.document.write("newWindow.location.search = " +
newWindow.location.search + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.protocol = http:
newWindow.location.host = home.netscape.com
newWindow.location.hostName = home.netscape.com
newWindow.location.port =
newWindow.location.pathname =

/comprod/products/navigator/version_2.0/script/
script_info/objects.html

newWindow.location.hash = #checkbox_object
newWindow.location.search =

See also Location.hash , Location.host , Location.hostname , Location.pathname ,
Location.port , Location.protocol , Location.search

pathname

A string specifying the URL-path portion of the URL.

Property of Location

Implemented in Navigator 2.0
Chapter 6, Window 353

Location
Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The pathname property specifies a portion of the URL. The pathname supplies
the details of how the specified resource can be accessed.

You can set the pathname property at any time, although it is safer to set the
href property to change a location. If the pathname that you specify cannot be
found in the current location, you get an error.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the pathname.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.href = " +
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.pathname = " +
newWindow.location.pathname + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.pathname =
/comprod/products/navigator/version_2.0/script/
script_info/objects.html

See also Location.hash , Location.host , Location.hostname , Location.href ,
Location.port , Location.protocol , Location.search

port

A string specifying the communications port that the server uses.

Property of Location

Implemented in Navigator 2.0
354 JavaScript Reference

Location
Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The port property specifies a portion of the URL. The port property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon.

You can set the port property at any time, although it is safer to set the href
property to change a location. If the port that you specify cannot be found in
the current location, you get an error. If the port property is not specified, it
defaults to 80.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the port.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.href = " +
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.port = " +
newWindow.location.port + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.port =

See also Location.hash , Location.host , Location.hostname , Location.href ,
Location.pathname , Location.protocol , Location.search

protocol

A string specifying the beginning of the URL, up to and including the first
colon.

Property of Location
Chapter 6, Window 355

Location
Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The protocol property specifies a portion of the URL. The protocol indicates
the access method of the URL. For example, the value "http:" specifies
HyperText Transfer Protocol, and the value "javascript:" specifies JavaScript
code.

You can set the protocol property at any time, although it is safer to set the
href property to change a location. If the protocol that you specify cannot be
found in the current location, you get an error.

The protocol property represents the scheme name of the URL. See Section
2.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the protocol.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object")

msgWindow.document.write("newWindow.location.href = " +
newWindow.location.href + "<P>")

msgWindow.document.write("newWindow.location.protocol = " +
newWindow.location.protocol + "<P>")

msgWindow.document.close()

The previous example displays output such as the following:

newWindow.location.href =
http://home.netscape.com/comprod/products/navigator/
version_2.0/script/script_info/objects.html#checkbox_object

newWindow.location.protocol = http:

See also Location.hash , Location.host , Location.hostname , Location.href ,
Location.pathname , Location.port , Location.search

Implemented in Navigator 2.0
356 JavaScript Reference

Location
search

A string beginning with a question mark that specifies any query information in
the URL.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The search property specifies a portion of the URL. This property applies to
HTTP URLs only.

The search property contains variable and value pairs; each pair is separated
by an ampersand. For example, two pairs in a search string could look as
follows:

?x=7&y=5

You can set the search property at any time, although it is safer to set the href
property to change a location. If the search that you specify cannot be found in
the current location, you get an error.

See Section 3.3 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the search.

Examples In the following example, the window.open statement creates a window called
newWindow and loads the specified URL into it. The document.write
statements display properties of newWindow.location in a window called
msgWindow.

newWindow=window.open
("http://guide-p.infoseek.com/WW/NS/Titles?qt=RFC+1738+&col=WW")

msgWindow.document.write("newWindow.location.href = " +
newWindow.location.href + "<P>")

msgWindow.document.close()
msgWindow.document.write("newWindow.location.search = " +

newWindow.location.search + "<P>")
msgWindow.document.close()

The previous example displays the following output:

newWindow.location.href =
http://guide-p.infoseek.com/WW/NS/Titles?qt=RFC+1738+&col=WW

newWindow.location.search = ?qt=RFC+1738+&col=WW

Property of Location

Implemented in Navigator 2.0
Chapter 6, Window 357

Location
See also Location.hash , Location.host , Location.hostname , Location.href ,
Location.pathname , Location.port , Location.protocol

Methods

reload

Forces a reload of the window’s current document (the document specified by
the Location.href property).

Syntax reload(forceGet)

Parameters

Description This method uses the same policy that the browser’s Reload button uses. The
user interface for setting the default value of this policy varies for different
browser versions.

By default, the reload method does not force a transaction with the server.
However, if the user has set the preference to check every time, the method
does a “conditional GET” request using an If-modified-since HTTP header, to
ask the server to return the document only if its last-modified time is newer
than the time the client keeps in its cache. In other words, reload reloads from
the cache, unless the user has specified to check every time and the document
has changed on the server since it was last loaded and saved in the cache.

Examples The following example displays an image and three radio buttons. The user can
click the radio buttons to choose which image is displayed. Clicking another
button lets the user reload the document.

<SCRIPT>
function displayImage(theImage) {

Method of Location

Implemented in Navigator 3.0

forceGet (Optional) If you supply true , forces an unconditional HTTP GET of the
document from the server. This should not be used unless you have reason
to believe that disk and memory caches are off or broken, or the server has
a new version of the document (for example, if it is generated by a CGI on
each request).
358 JavaScript Reference

Location
document.images[0].src=theImage
}
</SCRIPT>

<FORM NAME="imageForm">
Choose an image:

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image1" CHECKED

onClick="displayImage('seaotter.gif')">Sea otter

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image2"

onClick="displayImage('orca.gif')">Killer whale

<INPUT TYPE="radio" NAME="imageChoice" VALUE="image3"

onClick="displayImage('humpback.gif')">Humpback whale

<P><INPUT TYPE="button" VALUE="Click here to reload"
onClick="window.location.reload()">

</FORM>

See also Location.replace

replace

Loads the specified URL over the current history entry.

Syntax replace("URL")

Parameters

Description The replace method loads the specified URL over the current history entry.
After calling the replace method, the user cannot navigate to the previous URL
by using browser’s Back button.

If your program will be run with JavaScript in Navigator 2.0, you could put the
following line in a SCRIPT tag early in your program. This emulates replace ,
which was introduced in Navigator 3.0:

if (location.replace == null)
location.replace = location.assign

Method of Location

Implemented in Navigator 3.0

URL Specifies the URL to load.
Chapter 6, Window 359

Location
The replace method does not create a new entry in the history list. To create
an entry in the history list while loading a URL, use the History.go method.

Examples The following example lets the user choose among several catalogs to display.
The example displays two sets of radio buttons which let the user choose a
season and a category, for example the Spring/Summer Clothing catalog or the
Fall/Winter Home & Garden catalog. When the user clicks the Go button, the
displayCatalog function executes the replace method, replacing the current
URL with the URL appropriate for the catalog the user has chosen. After
invoking displayCatalog , the user cannot navigate to the previous URL (the
list of catalogs) by using browser’s Back button.

<SCRIPT>
function displayCatalog() {

var seaName=""
var catName=""

for (var i=0; i < document.catalogForm.season.length; i++) {
if (document.catalogForm.season[i].checked) {

seaName=document.catalogForm.season[i].value
i=document.catalogForm.season.length

}
}

for (var i in document.catalogForm.category) {
if (document.catalogForm.category[i].checked) {

catName=document.catalogForm.category[i].value
i=document.catalogForm.category.length

}
}
fileName=seaName + catName + ".html"
location.replace(fileName)

}
</SCRIPT>

<FORM NAME="catalogForm">
Which catalog do you want to see?

<P>Season

<INPUT TYPE="radio" NAME="season" VALUE="q1" CHECKED>Spring/Summer

<INPUT TYPE="radio" NAME="season" VALUE="q3">Fall/Winter

<P>Category

<INPUT TYPE="radio" NAME="category" VALUE="clo" CHECKED>Clothing

<INPUT TYPE="radio" NAME="category" VALUE="lin">Linens

<INPUT TYPE="radio" NAME="category" VALUE="hom">Home & Garden

<P><INPUT TYPE="button" VALUE="Go" onClick="displayCatalog()">
</FORM>

See also History , Window.open , History.go , Location.reload
360 JavaScript Reference

History
History
Contains an array of information on the URLs that the client has visited within a
window. This information is stored in a history list and is accessible through the
browser’s Go menu.

Created by History objects are predefined JavaScript objects that you access through the
history property of a Window object.

Description To change a window’s current URL without generating a history entry, you can
use the Location.replace method. This replaces the current page with a new
one without generating a history entry. See Location.replace .

You can refer to the history entries by using the Window.history array. This
array contains an entry for each history entry in source order. Each array entry
is a string containing a URL. For example, if the history list contains three
named entries, these entries are reflected as history[0] , history[1] , and
history[2] .

If you access the history array without specifying an array element, the
browser returns a string of HTML which displays a table of URLs, each of which
is a link.

Property
Summary

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added current, next, and previous
properties.

Property Description

current Specifies the URL of the current history entry.

length Reflects the number of entries in the history list.

next Specifies the URL of the next history entry.

previous Specifies the URL of the previous history entry.
Chapter 6, Window 361

History
Method Summary

Examples Example 1. The following example goes to the URL the user visited three
clicks ago in the current window.

history.go(-3)

Example 2. You can use the history object with a specific window or frame.
The following example causes window2 to go back one item in its window (or
session) history:

window2.history.back()

Example 3. The following example causes the second frame in a frameset to
go back one item:

parent.frames[1].history.back()

Example 4. The following example causes the frame named frame1 in a
frameset to go back one item:

parent.frame1.history.back()

Example 5. The following example causes the frame named frame2 in
window2 to go back one item:

window2.frame2.history.back()

Example 6. The following code determines whether the first entry in the
history array contains the string "NETSCAPE". If it does, the function
myFunction is called.

if (history[0].indexOf("NETSCAPE") != -1) {
myFunction(history[0])

}

Example 7. The following example displays the entire history list:

document.writeln("history is " + history)

This code displays output similar to the following:

Method Description

back Loads the previous URL in the history list.

forward Loads the next URL in the history list.

go Loads a URL from the history list.
362 JavaScript Reference

History
history is
Welcome to Netscape http://home.netscape.com/
Sun Microsystems http://www.sun.com/
Royal Airways http://www.supernet.net/~dugbrown/

See also Location , Location.replace

Properties

current

A string specifying the complete URL of the current history entry.

Security Navigator 3.0: This property is tainted by default. It has no value of data
tainting is disabled. For information on data tainting, see “Security” on page 55.

Navigator 4.0: Getting the value of this property requires the
UniversalBrowserRead privilege. It has no value if you do not have this
privilege. For information on security in Navigator 4.0, see Chapter 7,
“JavaScript Security,” in the JavaScript Guide.

Examples The following example determines whether history.current contains the
string "netscape.com" . If it does, the function myFunction is called.

if (history.current.indexOf("netscape.com") != -1) {
myFunction(history.current)

}

See also History.next , History.previous

length

The number of elements in the history array.

Property of History

Read-only

Implemented in Navigator 3.0

Property of History

Read-only

Implemented in Navigator 2.0
Chapter 6, Window 363

History
Security Navigator 4.0: Getting the value of this property requires the
UniversalBrowserRead privilege. For information on security in
Navigator 4.0, see Chapter 7, “JavaScript Security,” in the JavaScript Guide.

next

A string specifying the complete URL of the next history entry.

Security Navigator 3.0: This property is tainted by default. It has no value of data
tainting is disabled. For information on data tainting, see “Security” on page 55.

Navigator 4.0: Getting the value of this property requires the
UniversalBrowserRead privilege. It has no value if you do not have this
privilege. For information on security in Navigator 4.0, see Chapter 7,
“JavaScript Security,” in the JavaScript Guide.

Description The next property reflects the URL that would be used if the user chose
Forward from the Go menu.

Examples The following example determines whether history.next contains the string
"NETSCAPE.COM". If it does, the function myFunction is called.

if (history.next.indexOf("NETSCAPE.COM") != -1) {
myFunction(history.next)

}

See also History.current , History.previous

previous

A string specifying the complete URL of the previous history entry.

Security Navigator 3.0: This property is tainted by default. It has no value of data
tainting is disabled. For information on data tainting, see “Security” on page 55.

Property of History

Read-only

Implemented in Navigator 3.0

Property of History

Read-only

Implemented in Navigator 3.0
364 JavaScript Reference

History
Navigator 4.0: Getting the value of this property requires the
UniversalBrowserRead privilege. It has no value if you do not have this
privilege. For information on security in Navigator 4.0, see Chapter 7,
“JavaScript Security,” in the JavaScript Guide.

Description The previous property reflects the URL that would be used if the user chose
Back from the Go menu.

Examples The following example determines whether history.previous contains the
string "NETSCAPE.COM". If it does, the function myFunction is called.

if (history.previous.indexOf("NETSCAPE.COM") != -1) {
myFunction(history.previous)

}

See also History.current , History.next

Methods

back

Loads the previous URL in the history list.

Syntax back()

Parameters None

Description This method performs the same action as a user choosing the Back button in
the browser. The back method is the same as history.go(-1) .

Examples The following custom buttons perform the same operation as the browser’s
Back button:

<P><INPUT TYPE="button" VALUE="< Go Back"
onClick="history.back()">

<P><INPUT TYPE="button" VALUE="> Go Back"
onClick="myWindow.back()">

See also History.forward , History.go

Method of History

Implemented in Navigator 2.0
Chapter 6, Window 365

screen
forward

Loads the next URL in the history list.

Syntax forward()

Parameters None

Description This method performs the same action as a user choosing the Forward button
in the browser. The forward method is the same as history.go(1) .

Examples The following custom buttons perform the same operation as the browser’s
Forward button:

<P><INPUT TYPE="button" VALUE="< Forward"
onClick="history.forward()">

<P><INPUT TYPE="button" VALUE="> Forward"
onClick="myWindow.forward()">

See also History.back , History.go

go

Loads a URL from the history list.

Syntax go(delta)
go(location)

Parameters

Description The go method navigates to the location in the history list determined by the
specified parameter.

If the delta argument is 0, the browser reloads the current page. If it is an
integer greater than 0, the go method loads the URL that is that number of

Method of History

Implemented in Navigator 2.0

Method of History

Implemented in Navigator 2.0

delta An integer representing a relative position in the history list.

location A string representing all or part of a URL in the history list.
366 JavaScript Reference

C h a p t e r

7
Form
This chapter deals with the use of forms, which appear within a document to
obtain input from the user.

Table 7.1 summarizes the objects in this chapter.

Table 7.1 Form objects

Object Description

Button A push button on an HTML form.

Checkbox A checkbox on an HTML form.

FileUpload A file upload element on an HTML form.

Form Lets users input text and make choices from Form
elements such as checkboxes, radio buttons, and
selection lists.

Hidden A Text object that is suppressed from form display
on an HTML form.

Option A Select object option.

Password A text field on an HTML form that conceals its value by
displaying asterisks (*).

Radio A set of radio buttons on an HTML form.

Reset A reset button on an HTML form.

Select A selection list on an HTML form.
Chapter 7, Form 367

Form
Form
Lets users input text and make choices from Form elements such as
checkboxes, radio buttons, and selection lists. You can also use a form to post
data to a server.

Created by The HTML FORM tag. The JavaScript runtime engine creates a Form object for
each FORM tag in the document. You access FORM objects through the
document.forms property and through named properties of that object.

To define a form, use standard HTML syntax with the addition of JavaScript
event handlers. If you supply a value for the NAME attribute, you can use that
value to index into the forms array. In addition, the associated document
object has a named property for each named form.

Event handlers • onReset

• onSubmit

Description Each form in a document is a distinct object. You can refer to a form’s elements
in your code by using the element’s name (from the NAME attribute) or the
Form.elements array. The elements array contains an entry for each element
(such as a Checkbox , Radio , or Text object) in a form.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Textarea element on the same form

Submit A submit button on an HTML form.

Text A text input field on an HTML form.

Textarea A multiline input field on an HTML form.

Table 7.1 Form objects

Object Description

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added reset method.
Navigator 4.0: added handleEvent method.
368 JavaScript Reference

Form
have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Property
Summary

Method Summary

Examples Example 1: Named form. The following example creates a form called
myForm that contains text fields for first name and last name. The form also
contains two buttons that change the names to all uppercase or all lowercase.
The function setCase shows how to refer to the form by its name.

<HTML>
<HEAD>
<TITLE>Form object example</TITLE>
</HEAD>
<SCRIPT>
function setCase (caseSpec){
if (caseSpec == "upper") {

document.myForm.firstName.value=document.myForm.firstName.value.toUpperCase()
document.myForm.lastName.value=document.myForm.lastName.value.toUpperCase()}

Property Description

action Reflects the ACTION attribute.

elements An array reflecting all the elements in a form.

encoding Reflects the ENCTYPE attribute.

length Reflects the number of elements on a form.

method Reflects the METHOD attribute.

name Reflects the NAME attribute.

target Reflects the TARGET attribute.

Method Description

handleEvent Invokes the handler for the specified event.

reset Simulates a mouse click on a reset button for the calling form.

submit Submits a form.
Chapter 7, Form 369

Form
else {
document.myForm.firstName.value=document.myForm.firstName.value.toLowerCase()
document.myForm.lastName.value=document.myForm.lastName.value.toLowerCase()}

}
</SCRIPT>

<BODY>
<FORM NAME="myForm">
First name:
<INPUT TYPE="text" NAME="firstName" SIZE=20>

Last name:
<INPUT TYPE="text" NAME="lastName" SIZE=20>
<P><INPUT TYPE="button" VALUE="Names to uppercase" NAME="upperButton"

onClick="setCase('upper')">
<INPUT TYPE="button" VALUE="Names to lowercase" NAME="lowerButton"

onClick="setCase('lower')">
</FORM>
</BODY>
</HTML>

Example 2: forms array. The onLoad event handler in the following example
displays the name of the first form in an Alert dialog box.

<BODY onLoad="alert('You are looking at the ' + document.forms[0] + '
form!')">

If the form name is musicType , the alert displays the following message:

You are looking at the <object musicType> form!

Example 3: onSubmit event handler. The following example shows an
onSubmit event handler that determines whether to submit a form. The form
contains one Text object where the user enters three characters. onSubmit
calls a function, checkData , that returns true if there are 3 characters;
otherwise, it returns false. Notice that the form’s onSubmit event handler, not
the submit button’s onClick event handler, calls the checkData function.
Also, onSubmit contains a return statement that returns the value obtained
with the function call .

<HTML>
<HEAD>
<TITLE>Form object/onSubmit event handler example</TITLE>
<TITLE>Form object example</TITLE>
</HEAD>
<SCRIPT>
var dataOK=false
function checkData (){
if (document.myForm.threeChar.value.length == 3) {

return true}
else {
370 JavaScript Reference

Form
alert("Enter exactly three characters. " + document.myForm.threeChar.value +
" is not valid.")

return false}
}
</SCRIPT>
<BODY>
<FORM NAME="myForm" onSubmit="return checkData()">
Enter 3 characters:
<INPUT TYPE="text" NAME="threeChar" SIZE=3>
<P><INPUT TYPE="submit" VALUE="Done" NAME="submit1"

onClick="document.myForm.threeChar.value=document.myForm.threeChar.value.toUpperCase()">
</FORM>
</BODY>
</HTML>

Example 4: submit method. The following example is similar to the previous
one, except it submits the form using the submit method instead of a Submit
object. The form’s onSubmit event handler does not prevent the form from
being submitted. The form uses a button’s onClick event handler to call the
checkData function. If the value is valid, the checkData function submits the
form by calling the form’s submit method.

<HTML>
<HEAD>
<TITLE>Form object/submit method example</TITLE>
</HEAD>
<SCRIPT>
var dataOK=false
function checkData (){
if (document.myForm.threeChar.value.length == 3) {

document.myForm.submit()}
else {

alert("Enter exactly three characters. " +
document.myForm.threeChar.value +

" is not valid.")
return false}

}
</SCRIPT>
<BODY>
<FORM NAME="myForm" onSubmit="alert('Form is being submitted.')">
Enter 3 characters:
<INPUT TYPE="text" NAME="threeChar" SIZE=3>
<P><INPUT TYPE="button" VALUE="Done" NAME="button1"

onClick="checkData()">
</FORM>
</BODY>
</HTML>
Chapter 7, Form 371

Form
See also Button , Checkbox , FileUpload , Hidden , Password , Radio , Reset , Select ,
Submit , Text , Textarea .

Properties

action
A string specifying a destination URL for form data that is submitted

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Navigator 4.0: Submitting a form to a mailto: or news: URL requires the
UniversalSendMail privilege. For information on security in Navigator 4.0,
see Chapter 7, “JavaScript Security,” in the JavaScript Guide.

Description The action property is a reflection of the ACTION attribute of the FORM tag.
Each section of a URL contains different information. See Location for a
description of the URL components.

Examples The following example sets the action property of the musicForm form to the
value of the variable urlName:

document.musicForm.action=urlName

See also Form.encoding , Form.method , Form.target

elements

An array of objects corresponding to form elements (such as checkbox , radio ,
and Text objects) in source order.

Property of Form

Implemented in Navigator 2.0

Property of Form

Read-only

Implemented in Navigator 2.0
372 JavaScript Reference

Form
Description You can refer to a form’s elements in your code by using the elements array.
This array contains an entry for each object (Button , Checkbox , FileUpload ,
Hidden , Password , Radio , Reset , Select , Submit , Text , or Textarea object)
in a form in source order. Each radio button in a Radio object appears as a
separate element in the elements array. For example, if a form called myForm
has a text field and two checkboxes, you can refer to these elements
myForm.elements[0] , myForm.elements[1] , and myForm.elements[2] .

Although you can also refer to a form’s elements by using the element’s name
(from the NAME attribute), the elements array provides a way to refer to Form
objects programmatically without using their names. For example, if the first
object on the userInfo form is the userName Text object, you can evaluate it
in either of the following ways:

userInfo.userName.value
userInfo.elements[0].value

The value of each element in the elements array is the full HTML statement for
the object.

Examples See the examples for Frame .

encoding

A string specifying the MIME encoding of the form.

Description The encoding property initially reflects the ENCTYPE attribute of the FORM tag;
however, setting encoding overrides the ENCTYPE attribute.

Examples The following function returns the value of the encoding property of
musicForm :

function getEncoding() {
return document.musicForm.encoding

}

See also Form.action , Form.method , Form.target

Property of Form

Implemented in Navigator 2.0
Chapter 7, Form 373

Form
length

The number of elements in the form.

Description The form.length property tells you how many elements are in the form. You
can get the same information using form.elements.length .

method

A string specifying how form field input information is sent to the server.

Description The method property is a reflection of the METHOD attribute of the FORM tag. The
method property should evaluate to either "get" or "post" .

Examples The following function returns the value of the musicForm method property:

function getMethod() {
return document.musicForm.method

}

See also Form.action , Form.encoding , Form.target

name

A string specifying the name of the form.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting.

Property of Form

Read-only

Implemented in Navigator 2.0

Property of Form

Implemented in Navigator 2.0

Property of Form

Implemented in Navigator 2.0
374 JavaScript Reference

Form
Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

target

A string specifying the name of the window that responses go to after a form
has been submitted.

Description The target property initially reflects the TARGET attribute of the A , AREA, and
FORM tags; however, setting target overrides these attributes.

You can set target using a string, if the string represents a window name. The
target property cannot be assigned the value of a JavaScript expression or
variable.

Examples The following example specifies that responses to the musicInfo form are
displayed in the msgWindow window:

document.musicInfo.target="msgWindow"

See also Form.action , Form.encoding , Form.method

Methods

handleEvent

Invokes the handler for the specified event.

Property of Form

Implemented in Navigator 2.0

Method of Form
Chapter 7, Form 375

Form
Syntax handleEvent(event)

Parameters

Description For information on handling events, see “General Information about Events” on
page 481.

reset

Simulates a mouse click on a reset button for the calling form.

Syntax reset()

Parameters None

Description The reset method restores a form element’s default values. A reset button does
not need to be defined for the form.

Examples The following example displays a Text object in which the user is to type “CA”
or “AZ”. The Text object’s onChange event handler calls a function that
executes the form’s reset method if the user provides incorrect input. When
the reset method executes, defaults are restored and the form’s onReset event
handler displays a message.

<SCRIPT>
function verifyInput(textObject) {

if (textObject.value == 'CA' || textObject.value == 'AZ') {
alert('Nice input')

}
else { document.myForm.reset() }

}
</SCRIPT>

<FORM NAME="myForm" onReset="alert('Please enter CA or AZ.')">
Enter CA or AZ:
<INPUT TYPE="text" NAME="state" SIZE="2" onChange=verifyInput(this)><P>
</FORM>

Implemented in Navigator 4.0

event The name of an event for which the specified object has an event handler.

Method of Form

Implemented in Navigator 3.0
376 JavaScript Reference

Form
See also onReset , Reset

submit

Submits a form.

Syntax submit()

Parameters None

Security Navigator 3.0: The submit method fails without notice if the form’s action is a
mailto: , news: , or snews: URL. Users can submit forms with such URLs by
clicking a submit button, but a confirming dialog will tell them that they are
about to give away private or sensitive information.

Navigator 4.0: Submitting a form to a mailto: or news: URL requires the
UniversalSendMail privilege. For information on security in Navigator 4.0,
see Chapter 7, “JavaScript Security,” in the JavaScript Guide.

Description The submit method submits the specified form. It performs the same action as
a submit button.

Use the submit method to send data back to an HTTP server. The submit
method returns the data using either “get” or “post,” as specified in
Form.method .

Examples The following example submits a form called musicChoice :

document.musicChoice.submit()

If musicChoice is the first form created, you also can submit it as follows:

document.forms[0].submit()

See also the example for Form.

See also Submit , onSubmit

Method of Form

Implemented in Navigator 2.0
Chapter 7, Form 377

Hidden
Hidden
A Text object that is suppressed from form display on an HTML form. A
Hidden object is used for passing name/value pairs when a form submits.

Created by The HTML INPUT tag, with "hidden" as the value of the TYPE attribute. For a
given form, the JavaScript runtime engine creates appropriate Hidden objects
and puts these objects in the elements array of the corresponding Form object.
You access a Hidden object by indexing this array. You can index the array
either by number or, if supplied, by using the value of the NAME attribute.

Description A Hidden object is a form element and must be defined within a FORM tag.

A Hidden object cannot be seen or modified by an end user, but you can
programmatically change the value of the object by changing its value
property. You can use Hidden objects for client/server communication.

Property
Summary

Examples The following example uses a Hidden object to store the value of the last object
the user clicked. The form contains a “Display hidden value” button that the
user can click to display the value of the Hidden object in an Alert dialog box.

<HTML>
<HEAD>
<TITLE>Hidden object example</TITLE>
</HEAD>
<BODY>
Click some of these objects, then click the "Display value" button

to see the value of the last object clicked.
<FORM NAME="myForm">

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added type property

Property Description

form Specifies the form containing the Hidden object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the current value of the Hidden object.
378 JavaScript Reference

Hidden
<INPUT TYPE="hidden" NAME="hiddenObject" VALUE="None">
<P>
<INPUT TYPE="button" VALUE="Click me" NAME="button1"

onClick="document.myForm.hiddenObject.value=this.value">
<P>
<INPUT TYPE="radio" NAME="musicChoice" VALUE="soul-and-r&b"

onClick="document.myForm.hiddenObject.value=this.value"> Soul and
R&B
<INPUT TYPE="radio" NAME="musicChoice" VALUE="jazz"

onClick="document.myForm.hiddenObject.value=this.value"> Jazz
<INPUT TYPE="radio" NAME="musicChoice" VALUE="classical"

onClick="document.myForm.hiddenObject.value=this.value"> Classical
<P>
<SELECT NAME="music_type_single"

onFocus="document.myForm.hiddenObject.value=this.options[this.selectedI
ndex].text">

<OPTION SELECTED> Red <OPTION> Orange <OPTION> Yellow
</SELECT>
<P><INPUT TYPE="button" VALUE="Display hidden value" NAME="button2"

onClick="alert('Last object clicked: ' +
document.myForm.hiddenObject.value)">
</FORM>
</BODY>
</HTML>

See also document.cookie

Properties
form

An object reference specifying the form containing this object.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Method of Hidden

Read-only

Implemented in Navigator 2.0
Chapter 7, Form 379

Hidden
Examples Example 1. In the following example, the form myForm contains a Hidden
object and a button. When the user clicks the button, the value of the Hidden
object is set to the form’s name. The button’s onClick event handler uses
this.form to refer to the parent form, myForm.

<FORM NAME="myForm">
Form name:<INPUT TYPE="hidden" NAME="h1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Store Form Name"

onClick="this.form.h1.value=this.form.name">
</FORM>

Example 2. The following example uses an object reference, rather than the
this keyword, to refer to a form. The code returns a reference to myForm,
which is a form containing myHiddenObject .

document.myForm.myHiddenObject.form

See also Form

name

A string specifying the name of this object.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

type

For all Hidden objects, the value of the type property is "hidden" . This
property specifies the form element’s type.

Method of Hidden

Implemented in Navigator 2.0

Method of Hidden

Read-only

Implemented in Navigator 3.0
380 JavaScript Reference

Hidden
Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.myForm.elements.length; i++) {
document.writeln("
type is " + document.myForm.elements[i].type)

}

value

A string that reflects the VALUE attribute of the object.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Examples The following function evaluates the value property of a group of buttons and
displays it in the msgWindow window:

function valueGetter() {
var msgWindow=window.open("")
msgWindow.document.write("The submit button says " +

document.valueTest.submitButton.value + "
")
msgWindow.document.write("The reset button says " +

document.valueTest.resetButton.value + "
")
msgWindow.document.write("The hidden field says " +

document.valueTest.hiddenField.value + "
")
msgWindow.document.close()

}

This example displays the following values:

The submit button says Query Submit
The reset button says Reset
The hidden field says pipefish are cute.

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="hidden" NAME="hiddenField" VALUE="pipefish are cute.">

Method of Hidden

Implemented in Navigator 2.0
Chapter 7, Form 381

Text
Text
A text input field on an HTML form. The user can enter a word, phrase, or
series of numbers in a text field.

Created by The HTML INPUT tag, with "text" as the value of the TYPE attribute. For a
given form, the JavaScript runtime engine creates appropriate Text objects and
puts these objects in the elements array of the corresponding Form object. You
access a Text object by indexing this array. You can index the array either by
number or, if supplied, by using the value of the NAME attribute.

To define a Text object, use standard HTML syntax with the addition of
JavaScript event handlers.

Event handlers • onBlur

• onChange

• onFocus

• onSelect

Description A Text object on a form looks as follows:

A Text object is a form element and must be defined within a FORM tag.

Text objects can be updated (redrawn) dynamically by setting the value
property (this.value).

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added type property.
Navigator 4.0: added handleEvent method.

Text object
382 JavaScript Reference

Text
Property
Summary

Method Summary

Examples Example 1. The following example creates a Text object that is 25 characters
long. The text field appears immediately to the right of the words “Last name:”.
The text field is blank when the form loads.

Last name: <INPUT TYPE="text" NAME="last_name" VALUE="" SIZE=25>

Example 2. The following example creates two Text objects on a form. Each
object has a default value. The city object has an onFocus event handler that
selects all the text in the field when the user tabs to that field. The state object
has an onChange event handler that forces the value to uppercase.

<FORM NAME="form1">

City: <INPUT TYPE="text" NAME="city" VALUE="Anchorage"

SIZE="20" onFocus="this.select()">
State: <INPUT TYPE="text" NAME="state" VALUE="AK" SIZE="2"

onChange="this.value=this.value.toUpperCase()">
</FORM>

See also the examples for the onBlur , onChange , onFocus , and onSelect .

See also Text , Form, Password , String , Textarea

Property Descriptiohn

defaultValue Reflects the VALUE attribute.

form Specifies the form containing the Text object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the current value of the Text object’s field.

Method Descriptiohn

blur Removes focus from the object.

focus Gives focus to the object.

handleEvent Invokes the handler for the specified event.

select Selects the input area of the object.
Chapter 7, Form 383

Text
Properties

defaultValue

A string indicating the default value of a Text object.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The initial value of defaultValue reflects the value of the VALUE attribute.
Setting defaultValue programmatically overrides the initial setting.

You can set the defaultValue property at any time. The display of the related
object does not update when you set the defaultValue property, only when
you set the value property.

Examples The following function evaluates the defaultValue property of objects on the
surfCity form and displays the values in the msgWindow window:

function defaultGetter() {
msgWindow=window.open("")
msgWindow.document.write("hidden.defaultValue is " +

document.surfCity.hiddenObj.defaultValue + "
")
msgWindow.document.write("password.defaultValue is " +

document.surfCity.passwordObj.defaultValue + "
")
msgWindow.document.write("text.defaultValue is " +

document.surfCity.textObj.defaultValue + "
")
msgWindow.document.write("textarea.defaultValue is " +

document.surfCity.textareaObj.defaultValue + "
")
msgWindow.document.close()

}

See also Text.value

form

An object reference specifying the form containing this object.

Property of Text

Implemented in Navigator 2.0

Property of Text

Read-only
384 JavaScript Reference

Text
Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Examples Example 1. In the following example, the form myForm contains a Text object
and a button. When the user clicks the button, the value of the Text object is
set to the form’s name. The button’s onClick event handler uses this.form to
refer to the parent form, myForm.

<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
</FORM>

Example 2. The following example shows a form with several elements. When
the user clicks button2 , the function showElements displays an alert dialog
box containing the names of each element on the form myForm.

function showElements(theForm) {
str = "Form Elements of form " + theForm.name + ": \n "
for (i = 0; i < theForm.length; i++)

str += theForm.elements[i].name + "\n"
alert(str)

}
</script>
<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
<INPUT NAME="button2" TYPE="button" VALUE="Show Form Elements"

onClick="showElements(this.form)">
</FORM>

The alert dialog box displays the following text:

JavaScript Alert:
Form Elements of form myForm:
text1
button1
button2

Implemented in Navigator 2.0
Chapter 7, Form 385

Text
Example 3. The following example uses an object reference, rather than the
this keyword, to refer to a form. The code returns a reference to myForm,
which is a form containing myTextObject .

document.myForm.myTextObject.form

See also Form

name

A string specifying the name of this object.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting. The name property is not displayed on-
screen; it is used to refer to the objects programmatically.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Textarea element on the same form
have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

Property of Text

Implemented in Navigator 2.0
386 JavaScript Reference

Text
type

For all Text objects, the value of the type property is "text" . This property
specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type is " + document.form1.elements[i].type)

}

value

A string that reflects the VALUE attribute of the object.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The value property is a string that initially reflects the VALUE attribute. This
string is displayed in the text field. The value of this property changes when a
user or a program modifies the field.

You can set the value property at any time. The display of the Text object
updates immediately when you set the value property.

Examples The following function evaluates the value property of a group of buttons and
displays it in the msgWindow window:

function valueGetter() {
var msgWindow=window.open("")
msgWindow.document.write("submitButton.value is " +

document.valueTest.submitButton.value + "
")
msgWindow.document.write("resetButton.value is " +

document.valueTest.resetButton.value + "
")
msgWindow.document.write("myText.value is " +

document.valueTest.myText.value + "
")

Property of Text

Read-only

Implemented in Navigator 3.0

Property of Text

Implemented in Navigator 2.0
Chapter 7, Form 387

Text
msgWindow.document.close()
}

This example displays the following:

submitButton.value is Query Submit
resetButton.value is Reset
myText.value is Stonefish are dangerous.

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="text" NAME="myText" VALUE="Stonefish are dangerous.">

See also Text.defaultValue

Methods

blur

Removes focus from the text field.

Syntax blur()

Parameters None

Examples The following example removes focus from the text element userText:

userText.blur()

This example assumes that the text element is defined as

<INPUT TYPE="text" NAME="userText">

See also Text.focus , Text.select

Method of Text

Implemented in Navigator 2.0
388 JavaScript Reference

Text
focus

Navigates to the text field and gives it focus.

Syntax focus()

Parameters None

Description Use the focus method to navigate to a text field and give it focus. You can
then either programmatically enter a value in the field or let the user enter a
value. If you use this method without the select method, the cursor is
positioned at the beginning of the field.

Example See example for select .

See also Text.blur , Text.select

handleEvent

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

select

Selects the input area of the text field.

Method of Text

Implemented in Navigator 2.0

Method of Text

Implemented in Navigator 4.0

event The name of an event for which the specified object has an event
handler.

Method of Text

Implemented in Navigator 2.0
Chapter 7, Form 389

Textarea
Syntax select()

Parameters None

Description Use the select method to highlight the input area of a text field. You can use
the select method with the focus method to highlight a field and position the
cursor for a user response. This makes it easy for the user to replace all the text
in the field.

Example The following example uses an onClick event handler to move the focus to a
text field and select that field for changing:

<FORM NAME="myForm">
Last name: <INPUT TYPE="text" NAME="lastName" SIZE=20 VALUE="Pigman">

First name: <INPUT TYPE="text" NAME="firstName" SIZE=20 VALUE="Victoria">

<INPUT TYPE="button" VALUE="Change last name"

onClick="this.form.lastName.select();this.form.lastName.focus();">
</FORM>

See also Text.blur , Text.focus

Textarea
A multiline input field on an HTML form. The user can use a textarea field to
enter words, phrases, or numbers.

Created by The HTML TEXTAREA tag. For a given form, the JavaScript runtime engine
creates appropriate Textarea objects and puts these objects in the elements
array of the corresponding Form object. You access a Textarea object by
indexing this array. You can index the array either by number or, if supplied,
by using the value of the NAME attribute.

To define a text area, use standard HTML syntax with the addition of JavaScript
event handlers.

Event handlers • onBlur

• onChange

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added type property.
Navigator 4.0: added handleEvent method.
390 JavaScript Reference

Textarea
• onFocus

• onKeyDown

• onKeyPress

• onKeyUp

• onSelect

Description A Textarea object on a form looks as follows:

A Textarea object is a form element and must be defined within a FORM tag.

Textarea objects can be updated (redrawn) dynamically by setting the value
property (this.value).

To begin a new line in a Textarea object, you can use a newline character.
Although this character varies from platform to platform (Unix is \n , Windows
is \r , and Macintosh is \n), JavaScript checks for all newline characters before
setting a string-valued property and translates them as needed for the user’s
platform. You could also enter a newline character programmatically—one way
is to test the navigator.appVersion property to determine the current
platform, then set the newline character accordingly. See
navigator.appVersion for an example.

Textarea
object
Chapter 7, Form 391

Textarea
Property
Summary

Method Summary

Examples Example 1. The following example creates a Textarea object that is six rows
long and 55 columns wide. The textarea field appears immediately below the
word “Description:”. When the form loads, the Textarea object contains
several lines of data, including one blank line.

Description:

<TEXTAREA NAME="item_description" ROWS=6 COLS=55>
Our storage ottoman provides an attractive way to
store lots of CDs and videos--and it's versatile
enough to store other things as well.

It can hold up to 72 CDs under the lid and 20 videos
in the drawer below.
</TEXTAREA>

Example 2. The following example creates a string variable containing newline
characters for different platforms. When the user clicks the button, the
Textarea object is populated with the value from the string variable. The result
is three lines of text in the Textarea object.

<SCRIPT>
myString="This is line one.\nThis is line two.\rThis is line three."
</SCRIPT>

Property Descriptiohn

defaultValue Reflects the VALUE attribute.

form Specifies the form containing the Textarea object.

name Reflects the NAME attribute.

type Specifies that the object is a Textarea object.

value Reflects the current value of the Textarea object.

Method Descriptiohn

blur Removes focus from the object.

focus Gives focus to the object.

handleEvent Invokes the handler for the specified event.

select Selects the input area of the object.
392 JavaScript Reference

Textarea
<FORM NAME="form1">
<INPUT TYPE="button" Value="Populate the textarea"
onClick="document.form1.textarea1.value=myString">

<P>
<TEXTAREA NAME="textarea1" ROWS=6 COLS=55></TEXTAREA>

See also Form, Password , String , Text

Properties

defaultValue

A string indicating the default value of a Textarea object.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The initial value of defaultValue reflects the value specified between the
TEXTAREA start and end tags. Setting defaultValue programmatically overrides
the initial setting.

You can set the defaultValue property at any time. The display of the related
object does not update when you set the defaultValue property, only when
you set the value property.

Examples The following function evaluates the defaultValue property of objects on the
surfCity form and displays the values in the msgWindow window:

function defaultGetter() {
msgWindow=window.open("")
msgWindow.document.write("hidden.defaultValue is " +

document.surfCity.hiddenObj.defaultValue + "
")
msgWindow.document.write("password.defaultValue is " +

document.surfCity.passwordObj.defaultValue + "
")
msgWindow.document.write("text.defaultValue is " +

document.surfCity.textObj.defaultValue + "
")
msgWindow.document.write("textarea.defaultValue is " +

document.surfCity.textareaObj.defaultValue + "
")
msgWindow.document.close()

}

Property of Textarea

Implemented in Navigator 2.0
Chapter 7, Form 393

Textarea
See also Textarea.value

form

An object reference specifying the form containing this object.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Examples Example 1. The following example shows a form with several elements. When
the user clicks button2 , the function showElements displays an alert dialog
box containing the names of each element on the form myForm.

function showElements(theForm) {
str = "Form Elements of form " + theForm.name + ": \n "
for (i = 0; i < theForm.length; i++)

str += theForm.elements[i].name + "\n"
alert(str)

}
</script>
<FORM NAME="myForm">
Form name:<INPUT TYPE="textarea" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
<INPUT NAME="button2" TYPE="button" VALUE="Show Form Elements"

onClick="showElements(this.form)">
</FORM>

The alert dialog box displays the following text:

JavaScript Alert:
Form Elements of form myForm:
text1
button1
button2

Example 2. The following example uses an object reference, rather than the
this keyword, to refer to a form. The code returns a reference to myForm,
which is a form containing myTextareaObject .

document.myForm.myTextareaObject.form

Property of Textarea

Read-only

Implemented in Navigator 2.0
394 JavaScript Reference

Textarea
See also Form

name

A string specifying the name of this object.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting. The name property is not displayed on-
screen; it is used to refer to the objects programmatically.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Textarea element on the same form
have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

type

For all Textarea objects, the value of the type property is "textarea" . This
property specifies the form element’s type.

Property of Textarea

Implemented in Navigator 2.0

Property of Textarea
Chapter 7, Form 395

Textarea
Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type is " + document.form1.elements[i].type)

}

value

A string that initially reflects the VALUE attribute.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description This string is displayed in the textarea field. The value of this property changes
when a user or a program modifies the field.

You can set the value property at any time. The display of the Textarea
object updates immediately when you set the value property.

Examples The following function evaluates the value property of a group of buttons and
displays it in the msgWindow window:

function valueGetter() {
var msgWindow=window.open("")
msgWindow.document.write("submitButton.value is " +

document.valueTest.submitButton.value + "
")
msgWindow.document.write("resetButton.value is " +

document.valueTest.resetButton.value + "
")
msgWindow.document.write("blurb.value is " +

document.valueTest.blurb.value + "
")
msgWindow.document.close()

}

This example displays the following:

submitButton.value is Query Submit
resetButton.value is Reset
blurb.value is Tropical waters contain all sorts of cool fish,

Read-only

Implemented in Navigator 3.0

Property of Textarea

Implemented in Navigator 2.0
396 JavaScript Reference

Textarea
such as the harlequin ghost pipefish, dragonet, and cuttlefish.
A cuttlefish looks much like a football wearing a tutu and a mop.

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<TEXTAREA NAME="blurb" rows=3 cols=60>
Tropical waters contain all sorts of cool fish,
such as the harlequin ghost pipefish, dragonet, and cuttlefish.
A cuttlefish looks much like a football wearing a tutu and a mop.
</TEXTAREA>

See also Textarea.defaultValue

Methods

blur

Removes focus from the object.

Syntax blur()

Parameters None

Examples The following example removes focus from the textarea element userText:

userText.blur()

This example assumes that the textarea is defined as

<TEXTAREA NAME="userText">
Initial text for the text area.
</TEXTAREA>

See also Textarea.focus , Textarea.select

Method of Textarea

Implemented in Navigator 2.0
Chapter 7, Form 397

Textarea
focus

Navigates to the textarea field and gives it focus.

Syntax focus()

Parameters None

Description Use the focus method to navigate to the textarea field and give it focus. You
can then either programmatically enter a value in the field or let the user enter
a value. If you use this method without the select method, the cursor is
positioned at the beginning of the field.

See also Textarea.blur , Textarea.select

Example See example for Textarea.select .

handleEvent

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see “General Information about Events” on
page 481.

select

Selects the input area of the object.

Method of Textarea

Implemented in Navigator 2.0

Method of Textarea

Implemented in Navigator 4.0

event The name of an event for which the object has an event handler.

Method of Textarea
398 JavaScript Reference

Password
Syntax select()

Parameters None

Description Use the select method to highlight the input area of a textarea field. You can
use the select method with the focus method to highlight the field and
position the cursor for a user response. This makes it easy for the user to
replace all the text in the field.

Example The following example uses an onClick event handler to move the focus to a
textarea field and select that field for changing:

<FORM NAME="myForm">
Last name: <INPUT TYPE="text" NAME="lastName" SIZE=20 VALUE="Pigman">

First name: <INPUT TYPE="text" NAME="firstName" SIZE=20 VALUE="Victoria">

Description:

<TEXTAREA NAME="desc" ROWS=3 COLS=40>An avid scuba diver.</TEXTAREA>

<INPUT TYPE="button" VALUE="Change description"

onClick="this.form.desc.select();this.form.desc.focus();">
</FORM>

See also Textarea.blur , Textarea.focus

Password
A text field on an HTML form that conceals its value by displaying asterisks (*).
When the user enters text into the field, asterisks (*) hide entries from view.

Created by The HTML INPUT tag, with "password" as the value of the TYPE attribute. For
a given form, the JavaScript runtime engine creates appropriate Password
objects and puts these objects in the elements array of the corresponding Form
object. You access a Password object by indexing this array. You can index the
array either by number or, if supplied, by using the value of the NAME attribute.

Implemented in Navigator 2.0

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added type property; added onBlur and onFocus
event handlers
Navigator 4.0: added handleEvent method.
Chapter 7, Form 399

Password
Event handlers • onBlur

• onFocus

Description A Password object on a form looks as follows:

A Password object is a form element and must be defined within a FORM tag.

Security Navigator 3.0: If a user interactively modifies the value in a password field, you
cannot evaluate it accurately unless data tainting is enabled. See the JavaScript
Guide.

Property
Summary

Method Summary

Password object

Property Descriptiohn

defaultValue Reflects the VALUE attribute.

form Specifies the form containing the Password object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the current value of the Password object’s field.

Method Descriptiohn

blur Removes focus from the object.

focus Gives focus to the object.

handleEvent Invokes the handler for the specified event.

select Selects the input area of the object.
400 JavaScript Reference

Password
Examples The following example creates a Password object with no default value:

Password:
<INPUT TYPE="password" NAME="password" VALUE="" SIZE=25>

See also Form, Text

Properties

defaultValue

A string indicating the default value of a Password object.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The initial value of defaultValue is null (for security reasons), regardless of
the value of the VALUE attribute.

Setting defaultValue programmatically overrides the initial setting. If you
programmatically set defaultValue for the Password object and then evaluate
it, JavaScript returns the current value.

You can set the defaultValue property at any time. The display of the related
object does not update when you set the defaultValue property, only when
you set the value property.

See also Password.value

form

An object reference specifying the form containing this object.

Property of Password

Implemented in Navigator 2.0

Property of Password

Read-only

Implemented in Navigator 2.0
Chapter 7, Form 401

Password
Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

name

A string specifying the name of this object.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting. The name property is not displayed on-
screen; it is used to refer to the objects programmatically.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Password element on the same form
have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

Property of Password

Implemented in Navigator 2.0
402 JavaScript Reference

Password
type

For all Password objects, the value of the type property is "password" . This
property specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type is " + document.form1.elements[i].type)

}

value

A string that initially reflects the VALUE attribute.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55. If you programmatically set the value
property and then evaluate it, JavaScript returns the current value. If a user
interactively modifies the value in the password field, you cannot evaluate it
accurately unless data tainting is enabled. See the JavaScript Guide.

Description This string is represented by asterisks in the Password object field. The value of
this property changes when a user or a program modifies the field, but the
value is always displayed as asterisks.

See also Password.defaultValue

Property of Password

Read-only

Implemented in Navigator 3.0

Property of Password

Implemented in Navigator 2.0
Chapter 7, Form 403

Password
Methods

blur

Removes focus from the object.

Syntax blur()

Parameters None

Examples The following example removes focus from the password element userPass:

userPass.blur()

This example assumes that the password is defined as

<INPUT TYPE="password" NAME="userPass">

See also Password.focus , Password.select

focus

Gives focus to the password object.

Syntax focus()

Parameters None

Description Use the focus method to navigate to the password field and give it focus. You
can then either programmatically enter a value in the field or let the user enter
a value.

Examples In the following example, the checkPassword function confirms that a user has
entered a valid password. If the password is not valid, the focus method
returns focus to the Password object and the select method highlights it so
the user can reenter the password.

Method of Password

Implemented in Navigator 2.0

Method of Password

Implemented in Navigator 2.0
404 JavaScript Reference

Password
function checkPassword(userPass) {
if (badPassword) {

alert("Please enter your password again.")
userPass.focus()
userPass.select()

}
}

This example assumes that the Password object is defined as

<INPUT TYPE="password" NAME="userPass">

See also Password.blur , Password.select

handleEvent

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see “General Information about Events” on
page 481.

select

Selects the input area of the password field.

Syntax select()

Parameters None

Method of Password

Implemented in Navigator 4.0

event The name of an event for which the object has an event handler.

Method of Password

Implemented in Navigator 2.0
Chapter 7, Form 405

FileUpload
Description Use the select method to highlight the input area of the password field. You
can use the select method with the focus method to highlight a field and
position the cursor for a user response.

Examples In the following example, the checkPassword function confirms that a user has
entered a valid password. If the password is not valid, the select method
highlights the password field and the focus method returns focus to it so the
user can reenter the password.

function checkPassword(userPass) {
if (badPassword) {

alert("Please enter your password again.")
userPass.focus()
userPass.select()

}
}

This example assumes that the password is defined as

<INPUT TYPE="password" NAME="userPass">

See also Password.blur , Password.focus

FileUpload
A file upload element on an HTML form. A file upload element lets the user
supply a file as input.

Created by The HTML INPUT tag, with "file" as the value of the TYPE attribute. For a
given form, the JavaScript runtime engine creates appropriate FileUpload
objects and puts these objects in the elements array of the corresponding Form
object. You access a FileUpload object by indexing this array. You can index
the array either by number or, if supplied, by using the value of the NAME
attribute.

Event handlers • onBlur

• onChange

• onFocus

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added type property
Navigator 4.0: added handleEvent method.
406 JavaScript Reference

FileUpload
Description A FileUpload object on a form looks as follows:

A FileUpload object is a form element and must be defined within a FORM tag.

Property
Summary

Method Summary

FileUpload
object

Property Descriptiohn

form Specifies the form containing the FileUpload object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the current value of the file upload element’s field; this
corresponds to the name of the file to upload.

Method Descriptiohn

blur Removes focus from the object.

focus Gives focus to the object.

handleEvent Invokes the handler for the specified event.

select Selects the input area of the file upload field.
Chapter 7, Form 407

FileUpload
Examples The following example places a FileUpload object on a form and provides
two buttons that let the user display current values of the name and value
properties.

<FORM NAME="form1">
File to send: <INPUT TYPE="file" NAME="myUploadObject">
<P>Get properties

<INPUT TYPE="button" VALUE="name"

onClick="alert('name: ' + document.form1.myUploadObject.name)">
<INPUT TYPE="button" VALUE="value"

onClick="alert('value: ' +
document.form1.myUploadObject.value)">

</FORM>

See also Text

Properties

form

An object reference specifying the form containing the object.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

name

A string specifying the name of this object.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Property of FileUpload

Read-only

Implemented in Navigator 2.0

Property of FileUpload

Read-only

Implemented in Navigator 2.0
408 JavaScript Reference

Description
select()

Parameters
None

Description
Use the select method to highlight the input area of a file upload field. You

See also
FileUpload.blur , FileUpload.focus

Button
Button
A push button on an HTML form.

Created by The HTML INPUT tag, with "button" as the value of the TYPE attribute. For a
given form, the JavaScript runtime engine creates appropriate Button objects
and puts these objects in the elements array of the corresponding Form object.
You access a Button object by indexing this array. You can index the array
either by number or, if supplied, by using the value of the NAME attribute.

Event handlers • onBlur

• onClick

• onFocus

• onMouseDown

• onMouseUp

Description A Button object on a form looks as follows:

A Button object is a form element and must be defined within a FORM tag.

The Button object is a custom button that you can use to perform an action
you define. The button executes the script specified by its onClick event
handler.

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added type property; added onBlur and onFocus
event handlers; added blur and focus methods.
Navigator 4.0: added handleEvent method.

Button object
Chapter 7, Form 409

Button
Property
Summary

Method Summary

Examples The following example creates a button named calcButton . The text
“Calculate” is displayed on the face of the button. When the button is clicked,
the function calcFunction is called.

<INPUT TYPE="button" VALUE="Calculate" NAME="calcButton"
onClick="calcFunction(this.form)">

See also Form, Reset , Submit

Properties

form

An object reference specifying the form containing the button.

Property Descriptiohn

form Specifies the form containing the Button object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the VALUE attribute.

Method Descriptiohn

blur Removes focus from the button.

click Simulates a mouse-click on the button.

focus Gives focus to the button.

handleEvent Invokes the handler for the specified event.

Property of Button

Read-only

Implemented in Navigator 2.0
410 JavaScript Reference

Button
Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Examples Example 1. In the following example, the form myForm contains a Text object
and a button. When the user clicks the button, the value of the Text object is
set to the form’s name. The button’s onClick event handler uses this.form to
refer to the parent form, myForm.

<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
</FORM>

Example 2. The following example shows a form with several elements. When
the user clicks button2 , the function showElements displays an alert dialog
box containing the names of each element on the form myForm.

function showElements(theForm) {
str = "Form Elements of form " + theForm.name + ": \n "
for (i = 0; i < theForm.length; i++)

str += theForm.elements[i].name + "\n"
alert(str)

}
</script>
<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
<INPUT NAME="button2" TYPE="button" VALUE="Show Form Elements"

onClick="showElements(this.form)">
</FORM>

The alert dialog box displays the following text:

JavaScript Alert:
Form Elements of form myForm:
text1
button1
button2

Example 3. The following example uses an object reference, rather than the
this keyword, to refer to a form. The code returns a reference to myForm,
which is a form containing myButton .

document.myForm.myButton.form
Chapter 7, Form 411

Button
See also Form

name

A string specifying the button’s name.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting.

Do not confuse the name property with the label displayed on a button. The
value property specifies the label for the button. The name property is not
displayed on the screen; it is used to refer programmatically to the object.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Button element on the same form
have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

Property of Button

Implemented in Navigator 2.0
412 JavaScript Reference

Button
In the following example, the first statement creates a window called
netscapeWin . The second statement displays the value "netscapeHomePage"
in the Alert dialog box, because "netscapeHomePage" is the value of the
windowName argument of netscapeWin .

netscapeWin=window.open("http://home.netscape.com","netscapeHomePage")

alert(netscapeWin.name)

See also Button.value

type

For all Button objects, the value of the type property is "button" . This
property specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type is " + document.form1.elements[i].type)

}

value

A string that reflects the button’s VALUE attribute.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description This string is displayed on the face of the button.

The value property is read-only for Macintosh and UNIX systems. On
Windows, you can change this property.

Property of Button

Read-only

Implemented in Navigator 3.0

Property of Button

Read-only on Mac and UNIX; modifiable on Windows

Implemented in Navigator 2.0
Chapter 7, Form 413

Button
When a VALUE attribute is not specified in HTML, the value property is an
empty string.

Do not confuse the value property with the name property. The name property
is not displayed on the screen; it is used to refer programmatically to the
objects.

Examples The following function evaluates the value property of a group of buttons and
displays it in the msgWindow window:

function valueGetter() {
var msgWindow=window.open("")
msgWindow.document.write("submitButton.value is " +

document.valueTest.submitButton.value + "
")
msgWindow.document.write("resetButton.value is " +

document.valueTest.resetButton.value + "
")
msgWindow.document.write("helpButton.value is " +

document.valueTest.helpButton.value + "
")
msgWindow.document.close()

}

This example displays the following values:

Query Submit
Reset
Help

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="button" NAME="helpButton" VALUE="Help">

See also Button.name

Methods

blur

Removes focus from the button.

Syntax blur()

Method of Button

Implemented in Navigator 2.0
414 JavaScript Reference

Button
Parameters None

Examples The following example removes focus from the button element userButton:

userButton.blur()

This example assumes that the button is defined as

<INPUT TYPE="button" NAME="userButton">

See also Button.focus

click

Simulates a mouse-click on the button, but does not trigger the button’s
onClick event handler.

Syntax click()

Parameters None.

Security Navigator 4.0: Submitting a form to a mailto: or news: URL requires the
UniversalSendMail privilege. For information on security in Navigator 4.0,
see Chapter 7, “JavaScript Security,” in the JavaScript Guide.

focus

Navigates to the button and gives it focus.

Syntax focus()

Parameters None.

See also Button.blur

Method of Button

Implemented in Navigator 2.0

Method of Button

Implemented in Navigator 2.0
Chapter 7, Form 415

Submit
handleEvent

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see “General Information about Events” on
page 481.

Submit
A submit button on an HTML form. A submit button causes a form to be
submitted.

Created by The HTML INPUT tag, with "submit" as the value of the TYPE attribute. For a
given form, the JavaScript runtime engine creates an appropriate Submit object
and puts it in the elements array of the corresponding Form object. You access
a Submit object by indexing this array. You can index the array either by
number or, if supplied, by using the value of the NAME attribute.

Event handlers • onBlur

• onClick

• onFocus

Security Navigator 4.0: Submitting a form to a mailto: or news: URL requires the
UniversalSendMail privilege. For information on security in Navigator 4.0,
see Chapter 7, “JavaScript Security,” in the JavaScript Guide.

Method of Button

Implemented in Navigator 4.0

event The name of an event for which the object has an event handler.

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added type property; added onBlur and onFocus
event handlers; added blur and focus methods
Navigator 4.0: added handleEvent method.
416 JavaScript Reference

Submit
Description A Submit object on a form looks as follows:

A Submit object is a form element and must be defined within a FORM tag.

Clicking a submit button submits a form to the URL specified by the form’s
action property. This action always loads a new page into the client; it may be
the same as the current page, if the action so specifies or is not specified.

The submit button’s onClick event handler cannot prevent a form from being
submitted; instead, use the form’s onSubmit event handler or use the submit
method instead of a Submit object. See the examples for the Form object.

Property
Summary

Method Summary

Submit object

Property Descriptiohn

form Specifies the form containing the Submit object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the VALUE attribute.

Method Descriptiohn

blur Removes focus from the submit button.

click Simulates a mouse-click on the submit button.

focus Gives focus to the submit button.

handleEvent Invokes the handler for the specified event.
Chapter 7, Form 417

Submit
Examples The following example creates a Submit object called submitButton . The text
“Done” is displayed on the face of the button.

<INPUT TYPE="submit" NAME="submitButton" VALUE="Done">

See also the examples for the Form.

See also Button , Form, Reset , Form.submit , onSubmit

Properties

form

An object reference specifying the form containing the submit button.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

Examples The following example shows a form with several elements. When the user
clicks button2 , the function showElements displays an alert dialog box
containing the names of each element on the form myForm.

<SCRIPT>
function showElements(theForm) {

str = "Form Elements of form " + theForm.name + ": \n "
for (i = 0; i < theForm.length; i++)

str += theForm.elements[i].name + "\n"
alert(str)

}
</SCRIPT>
<FORM NAME="myForm">
Form name:<INPUT TYPE="text" NAME="text1" VALUE="Beluga">
<P>
<INPUT NAME="button1" TYPE="button" VALUE="Show Form Name"

onClick="this.form.text1.value=this.form.name">
<INPUT NAME="button2" TYPE="submit" VALUE="Show Form Elements"

onClick="showElements(this.form)">
</FORM>

Property of Submit

Read-only

Implemented in Navigator 2.0
418 JavaScript Reference

Submit
The alert dialog box displays the following text:

Form Elements of form myForm:
text1
button1
button2

See also Form

name

A string specifying the submit button’s name.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting.

Do not confuse the name property with the label displayed on the Submit
button. The value property specifies the label for this button. The name
property is not displayed on the screen; it is used to refer programmatically to
the button.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Submit element on the same form
have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

Property of Submit

Implemented in Navigator 2.0
Chapter 7, Form 419

Submit
msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

See also Submit.value

type

For all Submit objects, the value of the type property is "submit" . This
property specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type is " + document.form1.elements[i].type)

}

value

A string that reflects the submit button’s VALUE attribute.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description When a VALUE attribute is specified in HTML, the value property is that string
and is displayed on the face of the button. When a VALUE attribute is not
specified in HTML, the value property for the button is the string "Submit
Query."

Do not confuse the value property with the name property. The name property
is not displayed on the screen; it is used to refer programmatically to the
button.

Property of Submit

Read-only

Implemented in Navigator 3.0

Property of Submit

Read-only

Implemented in Navigator 2.0
420 JavaScript Reference

Submit
Examples The following function evaluates the value property of a group of buttons and
displays it in the msgWindow window:

function valueGetter() {
var msgWindow=window.open("")
msgWindow.document.write("submitButton.value is " +

document.valueTest.submitButton.value + "
")
msgWindow.document.write("resetButton.value is " +

document.valueTest.resetButton.value + "
")
msgWindow.document.write("helpButton.value is " +

document.valueTest.helpButton.value + "
")
msgWindow.document.close()

}

This example displays the following values:

Query Submit
Reset
Help

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="submit" NAME="submitButton">
<INPUT TYPE="reset" NAME="resetButton">
<INPUT TYPE="button" NAME="helpButton" VALUE="Help">

See also Submit.name

Methods

blur

Removes focus from the submit button.

Syntax blur()

Parameters None

See also Submit.focus

Method of Submit

Implemented in Navigator 2.0
Chapter 7, Form 421

Submit
click

Simulates a mouse-click on the submit button, but does not trigger an object’s
onClick event handler.

Syntax click()

Parameters None

focus

Navigates to the submit button and gives it focus.

Syntax focus()

Parameters None

See also Submit.blur

handleEvent

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Description For information on handling events, see “General Information about Events” on
page 481.

Method of Submit

Implemented in Navigator 2.0

Method of Submit

Implemented in Navigator 2.0

Method of Submit

Implemented in Navigator 4.0

event The name of an event for which the specified object has an event handler.
422 JavaScript Reference

Reset
Reset
A reset button on an HTML form. A reset button resets all elements in a form to
their defaults.

Created by The HTML INPUT tag, with "reset" as the value of the TYPE attribute. For a
given form, the JavaScript runtime engine creates an appropriate Reset object
and puts it in the elements array of the corresponding Form object. You access
a Reset object by indexing this array. You can index the array either by
number or, if supplied, by using the value of the NAME attribute.

Event handlers • onBlur

• onClick

• onFocus

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added type property; added onBlur and onFocus
event handlers; added blur and focus methods
Navigator 4.0: added handleEvent method.
Chapter 7, Form 423

Reset
Description A Reset object on a form looks as follows:

A Reset object is a form element and must be defined within a FORM tag.

The reset button’s onClick event handler cannot prevent a form from being
reset; once the button is clicked, the reset cannot be canceled.

Property
Summary

Reset object

Property Descriptiohn

form Specifies the form containing the Reset object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the VALUE attribute.
424 JavaScript Reference

Reset
Method Summary

Examples Example 1. The following example displays a Text object with the default
value “CA” and a reset button with the text “Clear Form” displayed on its face.
If the user types a state abbreviation in the Text object and then clicks the
Clear Form button, the original value of “CA” is restored.

State: <INPUT TYPE="text" NAME="state" VALUE="CA" SIZE="2">
<P><INPUT TYPE="reset" VALUE="Clear Form">

Example 2. The following example displays two Text objects, a Select
object, and three radio buttons; all of these objects have default values. The
form also has a reset button with the text “Defaults” on its face. If the user
changes the value of any of the objects and then clicks the Defaults button, the
original values are restored.

<HTML>
<HEAD>
<TITLE>Reset object example</TITLE>
</HEAD>
<BODY>
<FORM NAME="form1">

City: <INPUT TYPE="text" NAME="city" VALUE="Santa Cruz" SIZE="20">
State: <INPUT TYPE="text" NAME="state" VALUE="CA" SIZE="2">
<P><SELECT NAME="colorChoice">

<OPTION SELECTED> Blue
<OPTION> Yellow
<OPTION> Green
<OPTION> Red

</SELECT>
<P><INPUT TYPE="radio" NAME="musicChoice" VALUE="soul-and-r&b"

CHECKED> Soul and R&B

<INPUT TYPE="radio" NAME="musicChoice" VALUE="jazz">

Jazz

<INPUT TYPE="radio" NAME="musicChoice" VALUE="classical">

Classical
<P><INPUT TYPE="reset" VALUE="Defaults" NAME="reset1">
</FORM>
</BODY>

Method Descriptiohn

blur Removes focus from the reset button.

click Simulates a mouse-click on the reset button.

focus Gives focus to the reset button.

handleEvent Invokes the handler for the specified event.
Chapter 7, Form 425

Reset
</HTML>

See also Button , Form, onReset , Form.reset , Submit

Properties

form

An object reference specifying the form containing the reset button.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

See also Form

name

A string specifying the name of the reset button.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The value of the name property initially reflects the value of the NAME attribute.
Changing the name property overrides this setting.

Do not confuse the name property with the label displayed on the reset button.
The value property specifies the label for this button. The name property is not
displayed on the screen; it is used to refer programmatically to the button.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.

Property of Reset

Read-only

Implemented in Navigator 2.0

Property of Reset

Implemented in Navigator 2.0
426 JavaScript Reference

Reset
For example, if two Text elements and a Reset element on the same form
have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

See also Reset.value

type

For all Reset objects, the value of the type property is "reset" . This property
specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type is " + document.form1.elements[i].type)

}

value

A string that reflects the reset button’s VALUE attribute.

Property of Reset

Read-only

Implemented in Navigator 3.0

Property of Reset

Read-only

Implemented in Navigator 2.0
Chapter 7, Form 427

Security
None

Syntax
focus()

Parameters
None

See also
Reset.blur

Radio
Radio
An individual radio button in a set of radio buttons on an HTML form. The user
can use a set of radio buttons to choose one item from a list.

Created by The HTML INPUT tag, with "radio" as the value of the TYPE attribute. All the
radio buttons in a single group must have the same value for the NAME attribute.
This allows them to be accessed as a single group.

For a given form, the JavaScript runtime engine creates an individual Radio
object for each radio button in that form. It puts in a single array all the Radio
objects that have the same value for the NAME attribute. It puts that array in the
elements array of the corresponding Form object. If a single form has multiple
sets of radio buttons, the elements array has multiple Radio objects.

You access a set of buttons by accessing the Form.elements array (either by
number or by using the value of the NAME attribute). To access the individual
radio buttons in that set, you use the returned object array. For example, if your
document has a form called emp with a set of radio buttons whose NAME
attribute is "dept" , you would access the individual buttons as
document.emp.dept[0] , document.emp.dept[1] , and so on.

Event handlers • onBlur

• onClick

• onFocus

Description A Radio object on a form looks as follows:

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added type property; added blur and focus
methods.
Navigator 4.0: added handleEvent method.
428 JavaScript Reference

Radio
A Radio object is a form element and must be defined within a FORM tag.

Property
Summary

Radio
object

Property Descriptiohn

checked Lets you programmatically select a radio button (property of
the individual button).

defaultChecked Reflects the CHECKED attribute (property of the individual
button).

form Specifies the form containing the Radio object (property of
the array of buttons).

name Reflects the NAME attribute (property of the array of buttons).

type Reflects the TYPE attribute (property of the array of buttons).

value Reflects the VALUE attribute (property of the array of
buttons).
Chapter 7, Form 429

Radio
Method Summary

Examples Example 1. The following example defines a radio button group to choose
among three music catalogs. Each radio button is given the same name,
NAME="musicChoice" , forming a group of buttons for which only one choice
can be selected. The example also defines a text field that defaults to what was
chosen via the radio buttons but that allows the user to type a nonstandard
catalog name as well. The onClick event handler sets the catalog name input
field when the user clicks a radio button.

<INPUT TYPE="text" NAME="catalog" SIZE="20">
<INPUT TYPE="radio" NAME="musicChoice" VALUE="soul-and-r&b"

onClick="musicForm.catalog.value = 'soul-and-r&b'"> Soul and R&B
<INPUT TYPE="radio" NAME="musicChoice" VALUE="jazz"

onClick="musicForm.catalog.value = 'jazz'"> Jazz
<INPUT TYPE="radio" NAME="musicChoice" VALUE="classical"

onClick="musicForm.catalog.value = 'classical'"> Classical

Example 2. The following example contains a form with three text boxes and
three radio buttons. The radio buttons let the user choose whether the text
fields are converted to uppercase or lowercase, or not converted at all. Each
text field has an onChange event handler that converts the field value
depending on which radio button is checked. The radio buttons for uppercase
and lowercase have onClick event handlers that convert all fields when the
user clicks the radio button.

<HTML>
<HEAD>
<TITLE>Radio object example</TITLE>
</HEAD>
<SCRIPT>
function convertField(field) {

if (document.form1.conversion[0].checked) {
field.value = field.value.toUpperCase()}

else {
if (document.form1.conversion[1].checked) {

field.value = field.value.toLowerCase()}
}

Method Descriptiohn

blur Removes focus from the radio button.

click Simulates a mouse-click on the radio button.

focus Gives focus to the radio button.

handleEvent Invokes the handler for the specified event.
430 JavaScript Reference

Radio
}
function convertAllFields(caseChange) {

if (caseChange=="upper") {
document.form1.lastName.value = document.form1.lastName.value.toUpperCase()
document.form1.firstName.value = document.form1.firstName.value.toUpperCase()
document.form1.cityName.value = document.form1.cityName.value.toUpperCase()}
else {
document.form1.lastName.value = document.form1.lastName.value.toLowerCase()
document.form1.firstName.value = document.form1.firstName.value.toLowerCase()
document.form1.cityName.value = document.form1.cityName.value.toLowerCase()
}

}
</SCRIPT>
<BODY>
<FORM NAME="form1">
Last name:
<INPUT TYPE="text" NAME="lastName" SIZE=20 onChange="convertField(this)">

First name:
<INPUT TYPE="text" NAME="firstName" SIZE=20 onChange="convertField(this)">

City:
<INPUT TYPE="text" NAME="cityName" SIZE=20 onChange="convertField(this)">
<P>Convert values to:

<INPUT TYPE="radio" NAME="conversion" VALUE="upper"

onClick="if (this.checked) {convertAllFields('upper')}"> Upper case

<INPUT TYPE="radio" NAME="conversion" VALUE="lower"

onClick="if (this.checked) {convertAllFields('lower')}"> Lower case

<INPUT TYPE="radio" NAME="conversion" VALUE="noChange"> No conversion
</FORM>
</BODY>
</HTML>

See also the example for Link .

See also Checkbox , Form, Select

Properties

checked

A Boolean value specifying the selection state of a radio button.

Property of Radio

Implemented in Navigator 2.0
Chapter 7, Form 431

Radio
Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description If a radio button is selected, the value of its checked property is true;
otherwise, it is false. You can set the checked property at any time. The display
of the radio button updates immediately when you set the checked property.

At any given time, only one button in a set of radio buttons can be checked.
When you set the checked property for one radio button in a group to true,
that property for all other buttons in the group becomes false.

Examples The following example examines an array of radio buttons called musicType
on the musicForm form to determine which button is selected. The VALUE
attribute of the selected button is assigned to the checkedButton variable.

function stateChecker() {
var checkedButton = ""
for (var i in document.musicForm.musicType) {

if (document.musicForm.musicType[i].checked=="1") {
checkedButton=document.musicForm.musicType[i].value

}
}

}

See also Radio.defaultChecked

defaultChecked

A Boolean value indicating the default selection state of a radio button.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description If a radio button is selected by default, the value of the defaultChecked
property is true; otherwise, it is false. defaultChecked initially reflects whether
the CHECKED attribute is used within an INPUT tag; however, setting
defaultChecked overrides the CHECKED attribute.

Unlike for the checked property, changing the value of defaultChecked for
one button in a radio group does not change its value for the other buttons in
the group.

Property of Radio

Implemented in Navigator 2.0
432 JavaScript Reference

Radio
You can set the defaultChecked property at any time. The display of the radio
button does not update when you set the defaultChecked property, only
when you set the checked property.

Examples The following example resets an array of radio buttons called musicType on
the musicForm form to the default selection state:

function radioResetter() {
var i=""
for (i in document.musicForm.musicType) {

if (document.musicForm.musicType[i].defaultChecked==true) {
document.musicForm.musicType[i].checked=true

}
}

}

See also Radio.checked

form

An object reference specifying the form containing the radio button.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

name

A string specifying the name of the set of radio buttons with which this button
is associated.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting.

Property of Radio

Read-only

Implemented in Navigator 2.0

Property of Radio

Implemented in Navigator 2.0
Chapter 7, Form 433

Radio
All radio buttons that have the same value for their name property are in the
same group and are treated together. If you change the name of a single radio
button, you change which group of buttons it belongs to.

Do not confuse the name property with the label displayed on a Button. The
value property specifies the label for the button. The name property is not
displayed onscreen; it is used to refer programmatically to the button.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

type

For all Radio objects, the value of the type property is "radio" . This property
specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type is " + document.form1.elements[i].type)

}

value

A string that reflects the VALUE attribute of the radio button.

Property of Radio

Read-only

Implemented in Navigator 3.0

Property of Radio

Read-only

Implemented in Navigator 2.0
434 JavaScript Reference

Radio
Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description When a VALUE attribute is specified in HTML, the value property is a string that
reflects it. When a VALUE attribute is not specified in HTML, the value property
is a string that evaluates to "on" . The value property is not displayed on the
screen but is returned to the server if the radio button or checkbox is selected.

Do not confuse the property with the selection state of the radio button or the
text that is displayed next to the button. The checked property determines the
selection state of the object, and the defaultChecked property determines the
default selection state. The text that is displayed is specified following the
INPUT tag.

Examples The following function evaluates the value property of a group of radio
buttons and displays it in the msgWindow window:

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < document.valueTest.radioObj.length; i++) {

 msgWindow.document.write
 ("The value of radioObj[" + i + "] is " +
 document.valueTest.radioObj[i].value +"
")

}
msgWindow.document.close()

}

This example displays the following values:

on
on
on
on

The previous example assumes the buttons have been defined as follows:

<INPUT TYPE="radio" NAME="radioObj">R&B

<INPUT TYPE="radio" NAME="radioObj" CHECKED>Soul

<INPUT TYPE="radio" NAME="radioObj">Rock and Roll

<INPUT TYPE="radio" NAME="radioObj">Blues

See also Radio.checked , Radio.defaultChecked
Chapter 7, Form 435

Radio
Methods

blur

Removes focus from the radio button.

Syntax blur()

Parameters None

See also Radio.focus

click

Simulates a mouse-click on the radio button, but does not trigger the button’s
onClick event handler.

Syntax click()

Parameters None

Examples The following example toggles the selection status of the first radio button in
the musicType Radio object on the musicForm form:

document.musicForm.musicType[0].click()

The following example toggles the selection status of the newAge checkbox on
the musicForm form:

document.musicForm.newAge.click()

focus

Gives focus to the radio button.

Method of Radio

Implemented in Navigator 2.0

Method of Radio

Implemented in Navigator 2.0

Method of Radio
436 JavaScript Reference

Checkbox
Syntax focus()

Parameters None

Description Use the focus method to navigate to the radio button and give it focus. The
user can then easily toggle that button.

See also Radio.blur

handleEvent

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Checkbox
A checkbox on an HTML form. A checkbox is a toggle switch that lets the user
set a value on or off.

Created by The HTML INPUT tag, with "checkbox" as the value of the TYPE attribute. For
a given form, the JavaScript runtime engine creates appropriate Checkbox
objects and puts these objects in the elements array of the corresponding Form
object. You access a Checkbox object by indexing this array. You can index the
array either by number or, if supplied, by using the value of the NAME attribute.

Implemented in Navigator 2.0

Method of Radio

Implemented in Navigator 4.0

event The name of an event for which the specified object has an event handler.

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added type property; added onBlur and onFocus
event handlers; added blur and focus methods.
Navigator 4.0: added handleEvent method.
Chapter 7, Form 437

Checkbox
Event handlers • onBlur

• onClick

• onFocus

Description A Checkbox object on a form looks as follows:

A Checkbox object is a form element and must be defined within a FORM tag.

Use the checked property to specify whether the checkbox is currently
checked. Use the defaultChecked property to specify whether the checkbox
is checked when the form is loaded or reset.

Property
Summary

Checkbox object

Property Descriptiohn

checked Boolean property that reflects the current state of the
checkbox.

defaultChecked Boolean property that reflects the CHECKED attribute.

form Specifies the form containing the Checkbox object.

name Reflects the NAME attribute.

type Reflects the TYPE attribute.

value Reflects the TYPE attribute.
438 JavaScript Reference

Checkbox
Method Summary

Examples Example 1. The following example displays a group of four checkboxes that
all appear checked by default:

Specify your music preferences (check all that apply):

<INPUT TYPE="checkbox" NAME="musicpref_rnb" CHECKED> R&B

<INPUT TYPE="checkbox" NAME="musicpref_jazz" CHECKED> Jazz

<INPUT TYPE="checkbox" NAME="musicpref_blues" CHECKED> Blues

<INPUT TYPE="checkbox" NAME="musicpref_newage" CHECKED> New Age

Example 2. The following example contains a form with three text boxes and
one checkbox. The user can use the checkbox to choose whether the text fields
are converted to uppercase. Each text field has an onChange event handler that
converts the field value to uppercase if the checkbox is checked. The checkbox
has an onClick event handler that converts all fields to uppercase when the
user checks the checkbox.

<HTML>
<HEAD>
<TITLE>Checkbox object example</TITLE>
</HEAD>
<SCRIPT>
function convertField(field) {

if (document.form1.convertUpper.checked) {
field.value = field.value.toUpperCase()}

}
function convertAllFields() {

document.form1.lastName.value = document.form1.lastName.value.toUpperCase()
document.form1.firstName.value = document.form1.firstName.value.toUpperCase()
document.form1.cityName.value = document.form1.cityName.value.toUpperCase()

}
</SCRIPT>
<BODY>
<FORM NAME="form1">
Last name:
<INPUT TYPE="text" NAME="lastName" SIZE=20 onChange="convertField(this)">

First name:
<INPUT TYPE="text" NAME="firstName" SIZE=20 onChange="convertField(this)">

Method Descriptiohn

blur Removes focus from the checkbox.

click Simulates a mouse-click on the checkbox.

focus Gives focus to the checkbox.

handleEvent Invokes the handler for the specified event.
Chapter 7, Form 439

Checkbox

City:
<INPUT TYPE="text" NAME="cityName" SIZE=20 onChange="convertField(this)">
<P><INPUT TYPE="checkBox" NAME="convertUpper"

onClick="if (this.checked) {convertAllFields()}"
> Convert fields to upper case

</FORM>
</BODY>
</HTML>

See also Form, Radio

Properties

checked

A Boolean value specifying the selection state of the checkbox.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description If a checkbox button is selected, the value of its checked property is true;
otherwise, it is false.

You can set the checked property at any time. The display of the checkbox
button updates immediately when you set the checked property.

See also Checkbox.defaultChecked

defaultChecked

A Boolean value indicating the default selection state of a checkbox button.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Property of Checkbox

Implemented in Navigator 2.0

Property of Checkbox

Implemented in Navigator 2.0
440 JavaScript Reference

Checkbox
Description If a checkbox is selected by default, the value of the defaultChecked property
is true; otherwise, it is false. defaultChecked initially reflects whether the
CHECKED attribute is used within an INPUT tag; however, setting
defaultChecked overrides the CHECKED attribute.

You can set the defaultChecked property at any time. The display of the
checkbox does not update when you set the defaultChecked property, only
when you set the checked property.

See also Checkbox.checked

form

An object reference specifying the form containing the checkbox.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

See also Form

name

A string specifying the checkbox’s name.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Button element on the same form
have their NAME attribute set to "myField" , an array with the elements

Property of Checkbox

Read-only

Implemented in Navigator 2.0

Property of Checkbox

Implemented in Navigator 2.0
Chapter 7, Form 441

Checkbox
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

type

For all Checkbox objects, the value of the type property is "checkbox" . This
property specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type is " + document.form1.elements[i].type)

}

value

A string that reflects the VALUE attribute of the checkbox.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Property of Checkbox

Read-only

Implemented in Navigator 3.0

Property of Checkbox

Implemented in Navigator 2.0
442 JavaScript Reference

Checkbox
See also Checkbox.checked , Checkbox.defaultChecked

Methods

blur

Removes focus from the checkbox.

Syntax blur()

Parameters None

See also Checkbox.focus

click

Simulates a mouse-click on the checkbox, but does not trigger its onClick
event handler. The method checks the checkbox and sets toggles its value.

Syntax click()

Parameters None.

Examples The following example toggles the selection status of the newAge checkbox on
the musicForm form:

document.musicForm.newAge.click()

focus

Gives focus to the checkbox.

Method of Checkbox

Implemented in Navigator 2.0

Method of Checkbox

Implemented in Navigator 2.0

Method of Checkbox

Implemented in Navigator 2.0
Chapter 7, Form 443

Select
Syntax focus()

Parameters None

Description Use the focus method to navigate to a the checkbox and give it focus. The
user can then toggle the state of the checkbox.

See also Checkbox.blur

handleEvent

Invokes the handler for the specified event.

Syntax handleEvent(event)

Parameters

Select
A selection list on an HTML form. The user can choose one or more items from
a selection list, depending on how the list was created.

Created by The HTML SELECT tag. For a given form, the JavaScript runtime engine creates
appropriate Select objects for each selection list and puts these objects in the
elements array of the corresponding Form object. You access a Select object
by indexing this array. You can index the array either by number or, if
supplied, by using the value of the NAME attribute.

The runtime engine also creates Option objects for each OPTION tag inside the
SELECT tag.

Method of Checkbox

Implemented in Navigator 4.0

event The name of an event for which the specified object has an event handler.

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added type property; added the ability to add and
delete options.
Navigator 4.0: added handleEvent method.
444 JavaScript Reference

Select
Event handlers • onBlur

• onChange

• onFocus

Description The following figure shows a form containing two selection lists. The user can
choose one item from the list on the left and can choose multiple items from
the list on the right:

A Select object is a form element and must be defined within a FORM tag.

Property
Summary

Select object
allowing multiple
selections

Select object
allowing only
one selection

Property Descriptiohn

form Specifies the form containing the selection list.

length Reflects the number of options in the selection list.

name Reflects the NAME attribute.

options Reflects the OPTION tags.

selectedInde
x

Reflects the index of the selected option (or the first selected
option, if multiple options are selected).

type Specifies that the object is represents a selection list and
whether it can have one or more selected options.
Chapter 7, Form 445

Select
Method Summary

Examples Example 1. The following example displays two selection lists. In the first list,
the user can select only one item; in the second list, the user can select multiple
items.

Choose the music type for your free CD:
<SELECT NAME="music_type_single">

<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age

</SELECT>
<P>Choose the music types for your free CDs:

<SELECT NAME="music_type_multi" MULTIPLE>

<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age

</SELECT>

Example 2. The following example displays two selection lists that let the user
choose a month and day. These selection lists are initialized to the current date.
The user can change the month and day by using the selection lists or by
choosing preset dates from radio buttons. Text fields on the form display the
values of the Select object’s properties and indicate the date chosen and
whether it is Cinco de Mayo.

<HTML>
<HEAD>
<TITLE>Select object example</TITLE>
</HEAD>
<BODY>
<SCRIPT>
var today = new Date()
//---------------
function updatePropertyDisplay(monthObj,dayObj) {

// Get date strings
var monthInteger, dayInteger, monthString, dayString
monthInteger=monthObj.selectedIndex
dayInteger=dayObj.selectedIndex

Method Descriptiohn

blur Removes focus from the selection list.

focus Gives focus to the selection list.

handleEvent Invokes the handler for the specified event.
446 JavaScript Reference

Select
monthString=monthObj.options[monthInteger].text
dayString=dayObj.options[dayInteger].text
// Display property values
document.selectForm.textFullDate.value=monthString + " " + dayString
document.selectForm.textMonthLength.value=monthObj.length
document.selectForm.textDayLength.value=dayObj.length
document.selectForm.textMonthName.value=monthObj.name
document.selectForm.textDayName.value=dayObj.name
document.selectForm.textMonthIndex.value=monthObj.selectedIndex
document.selectForm.textDayIndex.value=dayObj.selectedIndex
// Is it Cinco de Mayo?
if (monthObj.options[4].selected && dayObj.options[4].selected)

document.selectForm.textCinco.value="Yes!"
else

document.selectForm.textCinco.value="No"
}
</SCRIPT>
<!--------------->
<FORM NAME="selectForm">
<P>Choose a month and day:
Month: <SELECT NAME="monthSelection"

onChange="updatePropertyDisplay(this,document.selectForm.daySelection)">
<OPTION> January <OPTION> February <OPTION> March
<OPTION> April <OPTION> May <OPTION> June
<OPTION> July <OPTION> August <OPTION> September
<OPTION> October <OPTION> November <OPTION> December

</SELECT>
Day: <SELECT NAME="daySelection"

onChange="updatePropertyDisplay(document.selectForm.monthSelection,this)">
<OPTION> 1 <OPTION> 2 <OPTION> 3 <OPTION> 4 <OPTION> 5
<OPTION> 6 <OPTION> 7 <OPTION> 8 <OPTION> 9 <OPTION> 10
<OPTION> 11 <OPTION> 12 <OPTION> 13 <OPTION> 14 <OPTION> 15
<OPTION> 16 <OPTION> 17 <OPTION> 18 <OPTION> 19 <OPTION> 20
<OPTION> 21 <OPTION> 22 <OPTION> 23 <OPTION> 24 <OPTION> 25
<OPTION> 26 <OPTION> 27 <OPTION> 28 <OPTION> 29 <OPTION> 30
<OPTION> 31

</SELECT>
<P>Set the date to:
<INPUT TYPE="radio" NAME="dateChoice"

onClick="
monthSelection.selectedIndex=0;
daySelection.selectedIndex=0;
updatePropertyDisplay

document.selectForm.monthSelection,document.selectForm.daySelection)">
New Year's Day

<INPUT TYPE="radio" NAME="dateChoice"
onClick="

monthSelection.selectedIndex=4;
daySelection.selectedIndex=4;
updatePropertyDisplay
Chapter 7, Form 447

Select
(document.selectForm.monthSelection,document.selectForm.daySelection)">
Cinco de Mayo

<INPUT TYPE="radio" NAME="dateChoice"
onClick="

monthSelection.selectedIndex=5;
daySelection.selectedIndex=20;
updatePropertyDisplay

(document.selectForm.monthSelection,document.selectForm.daySelection)">
Summer Solstice

<P>Property values:

Date chosen: <INPUT TYPE="text" NAME="textFullDate" VALUE="" SIZE=20">

monthSelection.length<INPUT TYPE="text" NAME="textMonthLength" VALUE="" SIZE=20">

daySelection.length<INPUT TYPE="text" NAME="textDayLength" VALUE="" SIZE=20">

monthSelection.name<INPUT TYPE="text" NAME="textMonthName" VALUE="" SIZE=20">

daySelection.name<INPUT TYPE="text" NAME="textDayName" VALUE="" SIZE=20">

monthSelection.selectedIndex

<INPUT TYPE="text" NAME="textMonthIndex" VALUE="" SIZE=20">

daySelection.selectedIndex<INPUT TYPE="text" NAME="textDayIndex" VALUE="" SIZE=20">

Is it Cinco de Mayo? <INPUT TYPE="text" NAME="textCinco" VALUE="" SIZE=20">
<SCRIPT>
document.selectForm.monthSelection.selectedIndex=today.getMonth()
document.selectForm.daySelection.selectedIndex=today.getDate()-1
updatePropertyDisplay(document.selectForm.monthSelection,document.selectForm.daySelection)
</SCRIPT>
</FORM>
</BODY>
</HTML>

Example 3. Add an option with the Option constructor. The following
example creates two Select objects, one with and one without the MULTIPLE
attribute. No options are initially defined for either object. When the user clicks
a button associated with the Select object, the populate function creates four
options for the Select object and selects the first option.

<SCRIPT>
function populate(inForm) {

colorArray = new Array("Red", "Blue", "Yellow", "Green")

var option0 = new Option("Red", "color_red")
var option1 = new Option("Blue", "color_blue")
var option2 = new Option("Yellow", "color_yellow")
var option3 = new Option("Green", "color_green")

for (var i=0; i < 4; i++) {
eval("inForm.selectTest.options[i]=option" + i)
if (i==0) {

inForm.selectTest.options[i].selected=true
}

}

history.go(0)
448 JavaScript Reference

Select
}
</SCRIPT>

<H3>Select Option() constructor</H3>
<FORM>
<SELECT NAME="selectTest"></SELECT><P>
<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
<P>
</FORM>

<HR>
<H3>Select-Multiple Option() constructor</H3>
<FORM>
<SELECT NAME="selectTest" multiple></SELECT><P>
<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
</FORM>

Example 4. Delete an option. The following function removes an option
from a Select object.

function deleteAnItem(theList,itemNo) {
theList.options[itemNo]=null
history.go(0)

}

See also Form, Radio

Properties

form

An object reference specifying the form containing the selection list.

Description Each form element has a form property that is a reference to the element’s
parent form. This property is especially useful in event handlers, where you
might need to refer to another element on the current form.

See also Form

Property of Select

Read-only

Implemented in Navigator 2.0
Chapter 7, Form 449

Select
length

The number of options in the selection list.

name

A string specifying the name of the selection list.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The name property initially reflects the value of the NAME attribute. Changing the
name property overrides this setting. The name property is not displayed on the
screen; it is used to refer to the list programmatically.

If multiple objects on the same form have the same NAME attribute, an array of
the given name is created automatically. Each element in the array represents
an individual Form object. Elements are indexed in source order starting at 0.
For example, if two Text elements and a Select element on the same form
have their NAME attribute set to "myField" , an array with the elements
myField[0] , myField[1] , and myField[2] is created. You need to be aware
of this situation in your code and know whether myField refers to a single
element or to an array of elements.

Examples In the following example, the valueGetter function uses a for loop to iterate
over the array of elements on the valueTest form. The msgWindow window
displays the names of all the elements on the form:

newWindow=window.open("http://home.netscape.com")

function valueGetter() {
var msgWindow=window.open("")
for (var i = 0; i < newWindow.document.valueTest.elements.length; i++) {

msgWindow.document.write(newWindow.document.valueTest.elements[i].name + "
")
}

}

Property of Select

Read-only

Implemented in Navigator 2.0

Property of Select

Implemented in Navigator 2.0
450 JavaScript Reference

Select
options

An array corresponding to options in a Select object in source order.

Description You can refer to the options of a Select object by using the options array.
This array contains an entry for each option in a Select object (OPTION tag) in
source order. For example, if a Select object named musicStyle contains
three options, you can access these options as musicStyle.options[0] ,
musicStyle.options[1] , and musicStyle.options[2] .

To obtain the number of options in the selection list, you can use either
Select.length or the length property of the options array. For example,
you can get the number of options in the musicStyle selection list with either
of these expressions:

musicStyle.length
musicStyle.options.length

You can add or remove options from a selection list using this array. To add or
replace an option to an existing Select object, you assign a new Option
object to a place in the array. For example, to create a new Option object
called jeans and add it to the end of the selection list named myList , you
could use this code:

jeans = new Option("Blue Jeans", "jeans", false, false);
myList.options[myList.length] = jeans;

To delete an option from a Select object, you set the appropriate index of the
options array to null. Removing an option compresses the options array. For
example, assume that myList has 5 elements in it, the value of the fourth
element is "foo" , and you execute this statement:

myList.options[1] = null

Now, myList has 4 elements in it and the value of the third element is "foo" .

After you delete an option, you must refresh the document by using
history.go(0) . This statement must be last. When the document reloads,
variables are lost if not saved in cookies or form element values.

Property of Select

Read-only

Implemented in Navigator 2.0
Chapter 7, Form 451

Select
You can determine which option in a selection list is currently selected by
using either the selectedIndex property of the options array or of the
Select object itself. That is, the following expressions return the same value:

musicStyle.selectedIndex
musicStyle.options.selectedIndex

For more information about this property, see Select.selectedIndex .

For Select objects that can have multiple selections (that is, the SELECT tag
has the MULTIPLE attribute), the selectedIndex property is not very useful. In
this case, it returns the index of the first selection. To find all the selected
options, you have to loop and test each option individually. For example, to
print a list of all selected options in a selection list named mySelect , you could
use code such as this:

document.write("You’ve selected the following options:\n")
for (var i = 0; i < mySelect.options.length; i++) {

if (mySelect.options[i].selected)
document.write(" mySelect.options[i].text\n")

}

In general, to work with individual options in a selection list, you work with
the appropriate Option object.

selectedIndex

An integer specifying the index of the selected option in a Select object.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description Options in a Select object are indexed in the order in which they are defined,
starting with an index of 0. You can set the selectedIndex property at any
time. The display of the Select object updates immediately when you set the
selectedIndex property.

If no option is selected, selectedIndex has a value of -1.

Property of Select

Implemented in Navigator 2.0
452 JavaScript Reference

Select
In general, the selectedIndex property is more useful for Select objects that
are created without the MULTIPLE attribute. If you evaluate selectedIndex
when multiple options are selected, the selectedIndex property specifies the
index of the first option only. Setting selectedIndex clears any other options
that are selected in the Select object.

The Option.selected property is more useful in conjunction with Select
objects that are created with the MULTIPLE attribute. With the
Option.selected property, you can evaluate every option in the options
array to determine multiple selections, and you can select individual options
without clearing the selection of other options.

Examples In the following example, the getSelectedIndex function returns the selected
index in the musicType Select object:

function getSelectedIndex() {
return document.musicForm.musicType.selectedIndex

}

The previous example assumes that the Select object is similar to the
following:

<SELECT NAME="musicType">
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age

</SELECT>

See also Option.defaultSelected , Option.selected

type

For all Select objects created with the MULTIPLE keyword, the value of the
type property is "select-multiple" . For Select objects created without this
keyword, the value of the type property is "select-one" . This property
specifies the form element’s type.

Examples The following example writes the value of the type property for every element
on a form.

Property of Select

Read-only

Implemented in Navigator 3.0
Chapter 7, Form 453

Select
for (var i = 0; i < document.form1.elements.length; i++) {
document.writeln("
type is " + document.form1.elements[i].type)

}

Methods

blur

Removes focus from the selection list.

Syntax blur()

Parameters None

See also Select.focus

focus

Navigates to the selection list and gives it focus.

Syntax focus()

Parameters None

Description Use the focus method to navigate to a selection list and give it focus. The user
can then make selections from the list.

See also Select.blur

handleEvent

Invokes the handler for the specified event.

Method of Select

Implemented in Navigator 2.0

Method of Select

Implemented in Navigator 2.0

Method of Select
454 JavaScript Reference

Option
Syntax handleEvent(event)

Parameters

Option
An option in a selection list.

Created by The Option constructor or the HTML OPTION tag. To create an Option object
with its constructor:

new Option(text, value, defaultSelected, selected)

Once you’ve created an Option object, you can add it to a selection list using
the Select.options array.

Parameters

Implemented in Navigator 4.0

event The name of an event for which the object has an event handler.

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added defaultSelected property; text property
can be changed to change the text of an option

text (Optional) Specifies the text to display in the select list.

value (Optional) Specifies a value that is returned to the server when the
option is selected and the form is submitted.

defaultSelected (Optional) Specifies whether the option is initially selected (true or
false).

selected (Optional) Specifies the current selection state of the option (true or
false).
Chapter 7, Form 455

Option
Property
Summary

Description Usually you work with Option objects in the context of a selection list (a
Select object). When JavaScript creates a Select object for each SELECT tag
in the document, it creates Option objects for the OPTION tags inside the
SELECT tag and puts those objects in the options array of the Select object.

In addition, you can create new options using the Option constructor and add
those to a selection list. After you create an option and add it to the Select
object, you must refresh the document by using history.go(0) . This
statement must be last. When the document reloads, variables are lost if not
saved in cookies or form element values.

You can use the Option.selected and Select.selectedIndex properties to
change the selection state of an option.

• The Select.selectedIndex property is an integer specifying the index of
the selected option. This is most useful for Select objects that are created
without the MULTIPLE attribute. The following statement sets a Select
object’s selectedIndex property:

document.myForm.musicTypes.selectedIndex = i

• The Option.selected property is a Boolean value specifying the current
selection state of the option in a Select object. If an option is selected, its
selected property is true; otherwise it is false. This is more useful for
Select objects that are created with the MULTIPLE attribute. The following
statement sets an option’s selected property to true:

document.myForm.musicTypes.options[i].selected = true

To change an option’s text, use is Option.text property. For example,
suppose a form has the following Select object:

Property Descriptiohn

defaultSelected Specifies the initial selection state of the option

selected Specifies the current selection state of the option

text Specifies the text for the option

value Specifies the value that is returned to the server when the
option is selected and the form is submitted
456 JavaScript Reference

Option
<SELECT name="userChoice">
<OPTION>Choice 1
<OPTION>Choice 2
<OPTION>Choice 3

</SELECT>

You can set the text of the i th item in the selection based on text entered in a
text field named whatsNew as follows:

myform.userChoice.options[i].text = myform.whatsNew.value

You do not need to reload or refresh after changing an option’s text.

Examples The following example creates two Select objects, one with and one without
the MULTIPLE attribute. No options are initially defined for either object. When
the user clicks a button associated with the Select object, the populate
function creates four options for the Select object and selects the first option.

<SCRIPT>
function populate(inForm) {

colorArray = new Array("Red", "Blue", "Yellow", "Green")

var option0 = new Option("Red", "color_red")
var option1 = new Option("Blue", "color_blue")
var option2 = new Option("Yellow", "color_yellow")
var option3 = new Option("Green", "color_green")

for (var i=0; i < 4; i++) {
eval("inForm.selectTest.options[i]=option" + i)
if (i==0) {

inForm.selectTest.options[i].selected=true
}

}

history.go(0)
}
</SCRIPT>

<H3>Select Option() constructor</H3>
<FORM>
<SELECT NAME="selectTest"></SELECT><P>
<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
<P>
</FORM>

<HR>
<H3>Select-Multiple Option() constructor</H3>
<FORM>
<SELECT NAME="selectTest" multiple></SELECT><P>
<INPUT TYPE="button" VALUE="Populate Select List" onClick="populate(this.form)">
</FORM>
Chapter 7, Form 457

Option
Properties

defaultSelected

A Boolean value indicating the default selection state of an option in a selection
list.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description If an option is selected by default, the value of the defaultSelected property
is true; otherwise, it is false. defaultSelected initially reflects whether the
SELECTED attribute is used within an OPTION tag; however, setting
defaultSelected overrides the SELECTED attribute.

You can set the defaultSelected property at any time. The display of the
corresponding Select object does not update when you set the
defaultSelected property of an option, only when you set the
Option.selected or Select.selectedIndex properties.

A Select object created without the MULTIPLE attribute can have only one
option selected by default. When you set defaultSelected in such an object,
any previous default selections, including defaults set with the SELECTED
attribute, are cleared. If you set defaultSelected in a Select object created
with the MULTIPLE attribute, previous default selections are not affected.

Examples In the following example, the restoreDefault function returns the
musicType Select object to its default state. The for loop uses the options
array to evaluate every option in the Select object. The if statement sets the
selected property if defaultSelected is true.

function restoreDefault() {
for (var i = 0; i < document.musicForm.musicType.length; i++) {

if (document.musicForm.musicType.options[i].defaultSelected == true) {
document.musicForm.musicType.options[i].selected=true

}
}

}

Property of Option

Implemented in Navigator 3.0
458 JavaScript Reference

Option
The previous example assumes that the Select object is similar to the
following:

<SELECT NAME="musicType">
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age

</SELECT>

See also Option.selected , Select.selectedIndex

selected

A Boolean value indicating whether an option in a Select object is selected.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description If an option in a Select object is selected, the value of its selected property
is true; otherwise, it is false. You can set the selected property at any time.
The display of the associated Select object updates immediately when you set
the selected property for one of its options.

In general, the Option.selected property is more useful than the
Select.selectedIndex property for Select objects that are created with the
MULTIPLE attribute. With the Option.selected property, you can evaluate
every option in the Select.options array to determine multiple selections,
and you can select individual options without clearing the selection of other
options.

Examples See the examples for defaultSelected .

See also Option.defaultSelected , Select.selectedIndex

text

A string specifying the text of an option in a selection list.

Property of Option

Implemented in Navigator 2.0

Property of Option
Chapter 7, Form 459

Option
Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The text property initially reflects the text that follows an OPTION tag of a
SELECT tag. You can set the text property at any time and the text displayed
by the option in the selection list changes.

Examples Example 1. In the following example, the getChoice function returns the
value of the text property for the selected option. The for loop evaluates
every option in the musicType Select object. The if statement finds the
option that is selected.

function getChoice() {
for (var i = 0; i < document.musicForm.musicType.length; i++) {

if (document.musicForm.musicType.options[i].selected == true) {
return document.musicForm.musicType.options[i].text

}
}
return null

}

The previous example assumes that the Select object is similar to the
following:

<SELECT NAME="musicType">
<OPTION SELECTED> R&B
<OPTION> Jazz
<OPTION> Blues
<OPTION> New Age

</SELECT>

Example 2. In the following form, the user can enter some text in the first text
field and then enter a number between 0 and 2 (inclusive) in the second text
field. When the user clicks the button, the text is substituted for the indicated
option number and that option is selected.

Implemented in Navigator 2.0
Navigator 3.0: The text property can be changed to updated the
selection option. In previous releases, you could set the text
property but the new value was not reflected in the Select object.
460 JavaScript Reference

C h a p t e r

8
Browser
This chapter deals with the browser and elements associated with it.

Table 8.1 summarizes the objects in this chapter.

navigator
Contains information about the version of Navigator in use.

Table 8.1 Browser-related objects

Object Description

navigator Contains information about the version of Navigator in
use.

MimeType Represents a MIME type (Multipart Internet Mail
Extension) supported by the client.

Plugin Represents a plug-in module installed on the client.

Client-side object

Implemented in Navigator 2.0
Navigator 3.0: added mimeTypes and plugins properties; added
javaEnabled and taintEnabled methods.
Navigator 4.0: added language and platform properties; added
preference method.
Chapter 8, Browser 461

navigator
Created by The JavaScript runtime engine on the client automatically creates the
navigator object.

Description Use the navigator object to determine which version of the Navigator your
users have, what MIME types the user’s Navigator can handle, and what plug-
ins the user has installed. All of the properties of the navigator object are
read-only.

Property
Summary

Method Summary

Property Descriptiohn

appCodeName Specifies the code name of the browser.

appName Specifies the name of the browser.

appVersion Specifies version information for the Navigator.

language Indicates the translation of the Navigator being used.

mimeTypes An array of all MIME types supported by the client.

platform Indicates the machine type for which the Navigator was
compiled.

plugins An array of all plug-ins currently installed on the client.

userAgent Specifies the user-agent header.

Method Descriptiohn

javaEnabled Tests whether Java is enabled.

plugins.refresh Makes newly installed plug-ins available and optionally
reloads open documents that contain plug-ins.

preference Allows a signed script to get and set certain Navigator
preferences.

taintEnabled Specifies whether data tainting is enabled.
462 JavaScript Reference

navigator
Properties

appCodeName

A string specifying the code name of the browser.

Examples The following example displays the value of the appCodeName property:

document.write("The value of navigator.appCodeName is " +
navigator.appCodeName)

For Navigator 2.0 and 3.0, this displays the following:

The value of navigator.appCodeName is Mozilla

appName

A string specifying the name of the browser.

Examples The following example displays the value of the appName property:

document.write("The value of navigator.appName is " +
navigator.appName)

For Navigator 2.0 and 3.0, this displays the following:

The value of navigator.appName is Netscape

appVersion

A string specifying version information for the Navigator.

Property of navigator

Read-only

Implemented in Navigator 2.0

Property of navigator

Read-only

Implemented in Navigator 2.0

Property of navigator

Read-only
Chapter 8, Browser 463

navigator
Description The appVersion property specifies version information in the following
format:

releaseNumber (platform ; country)

The values contained in this format are the following:

• releaseNumber is the version number of the Navigator. For example,
"2.0b4" specifies Navigator 2.0, beta 4.

• platform is the platform upon which the Navigator is running. For
example, "Win16" specifies a 16-bit version of Windows such as Windows
3.1.

• country is either "I" for the international release, or "U" for the domestic
U.S. release. The domestic release has a stronger encryption feature than
the international release.

Examples Example 1. The following example displays version information for the
Navigator:

document.write("The value of navigator.appVersion is " +
navigator.appVersion)

For Navigator 2.0 on Windows 95, this displays the following:

The value of navigator.appVersion is 2.0 (Win95, I)

For Navigator 3.0 on Windows NT, this displays the following:

The value of navigator.appVersion is 3.0 (WinNT, I)

Example 2. The following example populates a Textarea object with newline
characters separating each line. Because the newline character varies from
platform to platform, the example tests the appVersion property to determine
whether the user is running Windows (appVersion contains "Win" for all
versions of Windows). If the user is running Windows, the newline character is
set to \r\n; otherwise, it’s set to \n, which is the newline character for Unix and
Macintosh.

<SCRIPT>
var newline=null
function populate(textareaObject){

if (navigator.appVersion.lastIndexOf('Win') != -1)
newline="\r\n"

Implemented in Navigator 2.0
464 JavaScript Reference

navigator
else newline="\n"
textareaObject.value="line 1" + newline + "line 2" + newline
+ "line 3"

}
</SCRIPT>
<FORM NAME="form1">

<TEXTAREA NAME="testLines" ROWS=8 COLS=55></TEXTAREA>
<P><INPUT TYPE="button" VALUE="Populate the Textarea object"

onClick="populate(document.form1.testLines)">
</TEXTAREA>
</FORM>

language

Indicates the translation of the Navigator being used.

Description The value for language is usually a 2-letter code, such as "en" and occasionally
a five-character code to indicate a language subtype, such as "zh_CN".

Use this property to determine the language of the Navigator client software
being used. For example you might want to display translated text for the user.

mimeTypes

An array of all MIME types supported by the client.

The mimeTypes array contains an entry for each MIME type supported by the
client (either internally, via helper applications, or by plug-ins). For example, if
a client supports three MIME types, these MIME types are reflected as
navigator.mimeTypes[0] , navigator.mimeTypes[1] , and
navigator.mimeTypes[2] .

Each element of the mimeTypes array is a MimeType object.

Property of navigator

Read-only

Implemented in Navigator 4.0

Property of navigator

Read-only

Implemented in Navigator 3.0
Chapter 8, Browser 465

navigator
See also MimeType

platform

Indicates the machine type for which the Navigator was compiled.

Description Platform values are Win32, Win16, Mac68k, MacPPC and various Unix.

The machine type the Navigator was compiled for may differ from the actual
machine type due to version differences, emulators, or other reasons.

If you use SmartUpdate to download software to a user’s machine, you can use
this property to ensure that the trigger downloads the appropriate JAR files. The
triggering page checks the Navigator version before checking the platform
property. For information on using SmartUpdate, see Using JAR Installation
Manager for SmartUpdate1.

plugins

An array of all plug-ins currently installed on the client.

You can refer to the Plugin objects installed on the client by using this array.
Each element of the plugins array is a Plugin object. For example, if three
plug-ins are installed on the client, these plug-ins are reflected as
navigator.plugins[0] , navigator.plugins[1] , and
navigator.plugins[2] .

To use the plugins array:

1. http://developer.netscape.com/library/documentation/communicator/jarman/
index.htm

Property of navigator

Read-only

Implemented in Navigator 4.0

Property of navigator

Read-only

Implemented in Navigator 3.0
466 JavaScript Reference

navigator
1. navigator.plugins[index]
2. navigator.plugins[index][mimeTypeIndex]

index is an integer representing a plug-in installed on the client or a string
containing the name of a Plugin object (from the name property). The first
form returns the Plugin object stored at the specified location in the plugins
array. The second form returns the MimeType object at the specified index in
that Plugin object.

To obtain the number of plug-ins installed on the client, use the length
property: navigator.plugins.length .

plugins.refresh The plugins array has its own method, refresh . This
method makes newly installed plug-ins available, updates related arrays such as
the plugins array, and optionally reloads open documents that contain plug-
ins. You call this method with one of the following statements:

navigator.plugins.refresh(true)
navigator.plugins.refresh(false)

If you supply true, refresh refreshes the plugins array to make newly
installed plug-ins available and reloads all open documents that contain
embedded objects (EMBED tag). If you supply false, it refreshes the plugins
array, but does not reload open documents.

When the user installs a plug-in, that plug-in is not available until refresh is
called or the user closes and restarts Navigator.

Examples The following code refreshes arrays and reloads open documents containing
embedded objects:

navigator.plugins.refresh(true)

See also the examples for the Plugin object.

userAgent

A string representing the value of the user-agent header sent in the HTTP
protocol from client to server.

Property of navigator

Read-only

Implemented in Navigator 2.0
Chapter 8, Browser 467

navigator
Description Servers use the value sent in the user-agent header to identify the client.

Examples The following example displays userAgent information for the Navigator:

document.write("The value of navigator.userAgent is " +
navigator.userAgent)

For Navigator 2.0, this displays the following:

The value of navigator.userAgent is Mozilla/2.0 (Win16; I)

Methods

javaEnabled

Tests whether Java is enabled.

Syntax javaEnabled()

Parameters None.

Description javaEnabled returns true if Java is enabled; otherwise, false. The user can
enable or disable Java by through user preferences.

Examples The following code executes function1 if Java is enabled; otherwise, it
executes function2 .

if (navigator.javaEnabled()) {
function1()

}
else function2()

See also navigator.appCodeName , navigator.appName , navigator.userAgent

preference

Allows a signed script to get and set certain Navigator preferences.

Method of navigator

Static

Implemented in Navigator 3.0

Method of navigator
468 JavaScript Reference

navigator
Syntax preference(prefName)
preference(prefName, setValue)

Parameters

Description This method returns the value of the preference. If you use the method to set
the value, it returns the new value.

Security Reading a preference with the preference method requires the
UniversalPreferencesRead privilege. Setting a preference with this method
requires the UniversalPreferencesWrite privilege.

For information on security in Navigator 4.0, see Chapter 7, “JavaScript
Security,” in the JavaScript Guide.

With permission, you can get and set the preferences shown in Table 8.2.

Static

Implemented in Navigator 4.0

prefName A string representing the name of the preference you want to get or set.
Allowed preferences are listed below.

setValue The value you want to assign to the preference. This can be a string,
number, or Boolean.

Table 8.2 Preferences.

To do this... Set this preference... To...

Automatically load images general.always_load_images true or false

Enable Java security.enable_java true or false

Enable JavaScript javascript.enabled true or false

Enable style sheets browser.enable_style_sheets true or false

Enable SmartUpdate autoupdate.enabled true or false

Accept all cookies network.cookie.cookieBehavior 0

Accept only cookies that get sent
back to the originating server

network.cookie.cookieBehavior 1

Disable cookies network.cookie.cookieBehavior 2

Warn before accepting cookie network.cookie.warnAboutCookies true or false
Chapter 8, Browser 469

MimeType
taintEnabled

Specifies whether data tainting is enabled.

Syntax navigator.taintEnabled()

Description Tainting prevents other scripts from passing information that should be secure
and private, such as directory structures or user session history. JavaScript
cannot pass tainted values on to any server without the end user's permission.

Use taintEnabled to determine if data tainting is enabled. taintEnabled
returns true if data tainting is enabled, false otherwise. The user enables or
disables data tainting by using the environment variable NS_ENABLE_TAINT.

Examples The following code executes function1 if data tainting is enabled; otherwise it
executes function2.

if (navigator.taintEnabled()) {
function1()
}

else function2()

See also taint , untaint

MimeType
A MIME type (Multipart Internet Mail Extension) supported by the client.

Created by You do not create MimeType objects yourself. These objects are predefined
JavaScript objects that you access through the mimeTypes array of the
navigator or Plugin object:

navigator.mimeTypes[index]

Method of navigator

Static

Implemented in Navigator 3.0; removed in Navigator 4.0

Client-side object

Implemented in Navigator 3.0
470 JavaScript Reference

MimeType
where index is either an integer representing a MIME type supported by the
client or a string containing the type of a MimeType object (from the
MimeType.type property).

Description Each MimeType object is an element in a mimeTypes array. The mimeTypes
array is a property of both navigator and Plugin objects. For example, the
following table summarizes the values for displaying JPEG images:

Property
Summary

Methods None.

Examples The following code displays the type , description , suffixes , and
enabledPlugin properties for each MimeType object on a client:

document.writeln("<TABLE BORDER=1><TR VALIGN=TOP>",
"<TH ALIGN=left>i",
"<TH ALIGN=left>type",
"<TH ALIGN=left>description",
"<TH ALIGN=left>suffixes",
"<TH ALIGN=left>enabledPlugin.name</TR>")

for (i=0; i < navigator.mimeTypes.length; i++) {
document.writeln("<TR VALIGN=TOP><TD>",i,

Expression Value

navigator.mimeTypes["image/jpeg"].type image/jpeg

navigator.mimeTypes["image/jpeg"].description JPEG Image

navigator.mimeTypes["image/jpeg"].suffixes jpeg, jpg, jpe, jfif,
pjpeg, pjp

navigator.mimeTypes["image/jpeg"].enabledPlugins null

Property Descriptiohn

description A description of the MIME type.

enabledPlugin Reference to the Plugin object configured for the MIME
type.

suffixes A string listing possible filename extensions for the MIME
type, for example "mpeg, mpg, mpe, mpv, vbs,
mpegv" .

type The name of the MIME type, for example "video/mpeg" or
"audio/x-wav" .
Chapter 8, Browser 471

MimeType
"<TD>",navigator.mimeTypes[i].type,
"<TD>",navigator.mimeTypes[i].description,
"<TD>",navigator.mimeTypes[i].suffixes)

if (navigator.mimeTypes[i].enabledPlugin==null) {
document.writeln(
"<TD>None",
"</TR>")

} else {
document.writeln(
"<TD>",navigator.mimeTypes[i].enabledPlugin.name,
"</TR>")

}
}
document.writeln("</TABLE>")

The preceding example displays output similar to the following:

See also navigator , navigator.mimeTypes , Plugin

Properties

description

A human-readable description of the data type described by the MIME type
object.

i type description suffixes enabledPlugin.name

 0 audio/aiff AIFF aif, aiff LiveAudio

 1 audio/wav WAV wav LiveAudio

 2 audio/x-midi MIDI mid, midi LiveAudio

 3 audio/midi MIDI mid, midi LiveAudio

 4 video/msvideo Video for Windows avi NPAVI32 Dynamic
Link Library

 5 * Netscape Default Plugin Netscape Default
Plugin

6 zz-application/zz-winassoc-TGZ TGZ None

Property of MimeType
472 JavaScript Reference

MimeType
enabledPlugin

The Plugin object for the plug-in that is configured for the specified MIME
type If the MIME type does not have a plug-in configured, enabledPlugin is
null.

Description Use the enabledPlugin property to determine which plug-in is configured for
a specific MIME type. Each plug-in may support multiple MIME types, and each
MIME type could potentially be supported by multiple plug-ins. However, only
one plug-in can be configured for a MIME type. (On Macintosh and Unix, the
user can configure the handler for each MIME type; on Windows, the handler is
determined at browser start-up time.)

The enabledPlugin property is a reference to a Plugin object that represents
the plug-in that is configured for the specified MIME type.

You might need to know which plug-in is configured for a MIME type, for
example, to dynamically emit an EMBED tag on the page if the user has a plug-
in configured for the MIME type.

Examples The following example determines whether the Shockwave plug-in is installed.
If it is, a movie is displayed.

// Can we display Shockwave movies?
mimetype = navigator.mimeTypes["application/x-director"]
if (mimetype) {

// Yes, so can we display with a plug-in?
plugin = mimetype.enabledPlugin
if (plugin)

// Yes, so show the data in-line
document.writeln("Here\'s a movie: <EMBED SRC=mymovie.dir HEIGHT=100 WIDTH=100>")
else
// No, so provide a link to the data
document.writeln("Click here to see a movie.")

} else {
// No, so tell them so
document.writeln("Sorry, can't show you this cool movie.")

Read-only

Implemented in Navigator 3.0

Property of MimeType

Read-only

Implemented in Navigator 3.0
Chapter 8, Browser 473

Plugin
}

suffixes

A string listing possible file suffixes (also known as filename extensions) for the
MIME type.

Description The suffixes property is a string consisting of each valid suffix (typically three
letters long) separated by commas. For example, the suffixes for the "audio/

x-midi" MIME type are "mid, midi" .

type

A string specifying the name of the MIME type. This string distinguishes the
MIME type from all others; for example "video/mpeg" or "audio/x-wav" .

Property of MimeType

Plugin
A plug-in module installed on the client.

Created by Plugin objects are predefined JavaScript objects that you access through the
navigator.plugins array.

Property of MimeType

Read-only

Implemented in Navigator 3.0

Property of MimeType

Read-only

Implemented in Navigator 3.0

Client-side object

Implemented in Navigator 3.0
474 JavaScript Reference

Plugin
Description A Plugin object is a plug-in installed on the client. A plug-in is a software
module that the browser can invoke to display specialized types of embedded
data within the browser. The user can obtain a list of installed plug-ins by
choosing About Plug-ins from the Help menu.

Each Plugin object is itself array containing one element for each MIME type
supported by the plug-in. Each element of the array is a MimeType object. For
example, the following code displays the type and description properties of
the first Plugin object’s first MimeType object.

myPlugin=navigator.plugins[0]
myMimeType=myPlugin[0]
document.writeln('myMimeType.type is ',myMimeType.type,"
")
document.writeln('myMimeType.description is ',myMimeType.description)

The preceding code displays output similar to the following:

myMimeType.type is video/quicktime
myMimeType.description is QuickTime for Windows

The Plugin object lets you dynamically determine which plug-ins are installed
on the client. You can write scripts to display embedded plug-in data if the
appropriate plug-in is installed, or display some alternative information such as
images or text if not.

Plug-ins can be platform dependent and configurable, so a Plugin object’s
array of MimeType objects can vary from platform to platform, and from user to
user.

Each Plugin object is an element in the plugins array.

When you use the EMBED tag to generate output from a plug-in application, you
are not creating a Plugin object. Use the document.embeds array to refer to
plug-in instances created with EMBED tags. See the document.embeds array.

Property
Summary

Property Descriptiohn

description A description of the plug-in.

filename Name of the plug-in file on disk.

length Number of elements in the plug-in’s array of MimeType objects.

name Name of the plug-in.
Chapter 8, Browser 475

Plugin
Examples Example 1. The user can obtain a list of installed plug-ins by choosing About
Plug-ins from the Help menu. To see the code the browser uses for this report,
choose About Plug-ins from the Help menu, then choose Page Source from the
View menu.

Example 2. The following code assigns shorthand variables for the predefined
LiveAudio properties.

var myPluginName = navigator.plugins["LiveAudio"].name
var myPluginFile = navigator.plugins["LiveAudio"].filename
var myPluginDesc = navigator.plugins["LiveAudio"].description

Example 3. The following code displays the message “LiveAudio is configured
for audio/wav” if the LiveAudio plug-in is installed and is enabled for the
"audio/wav" MIME type:

var myPlugin = navigator.plugins["LiveAudio"]
var myType = myPlugin["audio/wav"]
if (myType && myType.enabledPlugin == myPlugin)

document.writeln("LiveAudio is configured for audio/wav")

Example 4. The following expression represents the number of MIME types
that Shockwave can display:

navigator.plugins["Shockwave"].length

Example 5. The following code displays the name, filename , description ,
and length properties for each Plugin object on a client:

document.writeln("<TABLE BORDER=1><TR VALIGN=TOP>",
"<TH ALIGN=left>i",
"<TH ALIGN=left>name",
"<TH ALIGN=left>filename",
"<TH ALIGN=left>description",
"<TH ALIGN=left># of types</TR>")

for (i=0; i < navigator.plugins.length; i++) {
document.writeln("<TR VALIGN=TOP><TD>",i,

"<TD>",navigator.plugins[i].name,
"<TD>",navigator.plugins[i].filename,
"<TD>",navigator.plugins[i].description,
"<TD>",navigator.plugins[i].length,
"</TR>")

}
document.writeln("</TABLE>")

The preceding example displays output similar to the following:
476 JavaScript Reference

Plugin
See also MimeType , document.embeds

Properties

description

A human-readable description of the plug-in. The text is provided by the plug-
in developers.

filename

The name of a plug-in file on disk.

Description The filename property is the plug-in program’s file name and is supplied by
the plug-in itself. This name may vary from platform to platform.

i name filename description # of types

0 QuickTime
Plug-In

d:\nettools\netscape\nav30\Program\
plugins\NPQTW32.DLL

QuickTime Plug-In for
Win32 v.1.0.0

1

1 LiveAudio d:\nettools\netscape\nav30\Program\
plugins\NPAUDIO.DLL

LiveAudio - Netscape
Navigator sound
playing component

7

2 NPAVI32
Dynamic
Link Library

d:\nettools\netscape\nav30\Program\
plugins\npavi32.dll

NPAVI32, avi plugin DLL 2

3 Netscape
Default
Plugin

d:\nettools\netscape\nav30\Program\
plugins\npnul32.dll

Null Plugin 1

Property of Plugin

Read-only

Implemented in Navigator 3.0

Property of Plugin

Read-only

Implemented in Navigator 3.0
Chapter 8, Browser 477

Plugin
Examples See the examples for Plugin .

length

The number of elements in the plug-in’s array of MimeType objects.

name

A string specifying the plug-in’s name.

Security Navigator 3.0: This property is tainted by default. For information on data
tainting, see “Security” on page 55.

Description The plug-in’s name, supplied by the plug-in itself. Each plug-in should have a
name that uniquely identifies it.

Property of Plugin

Read-only

Implemented in Navigator 3.0

Property of Plugin

Read-only

Implemented in Navigator 3.0
478 JavaScript Reference

C h a p t e r

9
Events and Event Handlers
This chapter contains the event object and the event handlers that are used
with client-side objects in JavaScript to evoke particular actions. In addition, it
contains general information about using events and event handlers.

Table 9.1 lists the one object in this chapter.

Table 9.2 summarizes the JavaScript event handlers.

Table 9.1 Event-related object

Object Description

event Represents a JavaScript event. Passed to every event handler.

Table 9.2 Events and their corresponding event handlers.

Event Event handler Event occurs when...

abort onAbort The user aborts the loading of an image (for example by clicking a link
or clicking the Stop button).

blur onBlur A form element loses focus or when a window or frame loses focus.

change onChange A select, text, or textarea field loses focus and its value has been
modified.

click onClick An object on a form is clicked.

dblclick onDblClick The user double-clicks a form element or a link.
Chapter 9, Events and Event Handlers 479

dragdrop onDragDrop The user drops an object onto the browser window, such as dropping a
file on the browser window.

error onError The loading of a document or image causes an error.

focus onFocus A window, frame, or frameset receives focus or when a form element
receives input focus.

keydown onKeyDown The user depresses a key.

keypress onKeyPress The user presses or holds down a key.

keyup onKeyUp The user releases a key.

load onLoad The browser finishes loading a window or all of the frames within a
FRAMESET tag.

mousedown onMouseDown The user depresses a mouse button.

mousemove onMouseMove The user moves the cursor.

mouseout onMouseOut The cursor leaves an area (client-side image map) or link from inside
that area or link.

mouseover onMouseOver The cursor moves over an object or area from outside that object or
area.

mouseup onMouseUp The user releases a mouse button.

move onMove The user or script moves a window or frame.

reset onReset The user resets a form (clicks a Reset button).

resize onResize The user or script resizes a window or frame.

select onSelect The user selects some of the text within a text or textarea field.

submit onSubmit The user submits a form.

unload onUnload The user exits a document.

Table 9.2 Events and their corresponding event handlers.

Event Event handler Event occurs when...
480 JavaScript Reference

General Information about Events
General Information about Events
JavaScript applications in the browser are largely event-driven. Events are
actions that occur usually as a result of something the user does. For example,
clicking a button is an event, as is changing a text field or moving the mouse
over a link. For your script to react to an event, you define event handlers, such
as onChange and onClick .

Defining Event Handlers

If an event applies to an HTML tag, then you can define an event handler for it.
The name of an event handler is the name of the event, preceded by "on" . For
example, the event handler for the focus event is onFocus .

To create an event handler for an HTML tag, add an event handler attribute to
the tag. Put JavaScript code in quotation marks as the attribute value. The
general syntax is

<TAG eventHandler="JavaScript Code">

where TAG is an HTML tag and eventHandler is the name of the event
handler. For example, suppose you have created a JavaScript function called
compute . You can cause the browser to perform this function when the user
clicks a button by assigning the function call to the button’s onClick event
handler:

<INPUT TYPE="button" VALUE="Calculate" onClick="compute(this.form)">

You can put any JavaScript statements inside the quotation marks following
onClick . These statements are executed when the user clicks the button. If you
want to include more than one statement, separate statements with a
semicolon.

When you create an event handler, the corresponding JavaScript object gets a
property with the name of the event handler in lower case letters. (In
Navigator 4.0, you can also use the mixed case name of the event handler for
the property name.) This property allows you to access the object’s event
handler. For example, in the preceding example, JavaScript creates a Button
object with an onclick property whose value is "compute(this.form)" .

Chapter 7, “JavaScript Security,” in JavaScript Guide contains more information
about creating and using event handlers.
Chapter 9, Events and Event Handlers 481

General Information about Events
Events in Navigator 4.0

In Navigator 4.0, JavaScript includes event objects as well as event handlers.
Each event has an event object associated with it. The event object provides
information about the event, such as the type of event and the location of the
cursor at the time of the event. When an event occurs, and if an event handler
has been written to handle the event, the event object is sent as an argument
to the event handler.

Typically, the object on which the event occurs handles the event. For example,
when the user clicks a button, it is often the button’s event handler that handles
the event. Sometimes you may want the Window or document object to handle
certain types of events. For example, you may want the document object to
handle all MouseDown events no matter where they occur in the document.
JavaScript’s event capturing model allows you to define methods that capture
and handle events before they reach their intended target.

In addition to providing the event object, Navigator 4.0 allows a Window or
document to capture and handle an event before it reaches its intended target.
To accomplish this, the Window, document , and Layer objects have these new
methods:
• captureEvents
• releaseEvents
• routeEvent
• handleEvent (Not a method of the Layer object)

For example, suppose you want to capture all click events that occur in a
window. First, you need to set up the window to capture click events:

window.captureEvents(Event.CLICK);

The argument to Window.captureEvents is a property of the event object
and indicates the type of event to capture. To capture multiple events, the
argument is a list separated by vertical slashes (|). For example:

window.captureEvents(Event.CLICK | Event.MOUSEDOWN | Event.MOUSEUP)

Next, you need to define a function that handles the event. The argument evnt
is the event object for the event.

function clickHandler(evnt) {
//What goes here depends on how you want to handle the event.
//This is described below.

}

482 JavaScript Reference

General Information about Events
You have four options for handling the event:

• Return true. In the case of a link, the link is followed and no other event
handler is checked. If the event cannot be canceled, this ends the event
handling for that event.

function clickHandler(evnt) { return true; }

• Return false. In the case of a link, the link is not followed. If the event is
non-cancelable, this ends the event handling for that event.

function clickHandler(evnt) { return false; }

• Call routeEvent . JavaScript looks for other event handlers for the event. If
another object is attempting to capture the event (such as the document),
JavaScript calls its event handler. If no other object is attempting to capture
the event, JavaScript looks for an event handler for the event’s original
target (such as a button). The routeEvent method returns the value
returned by the event handler. The capturing object can look at this return
value and decide how to proceed.

function clickHandler(evnt) {
 var retval = routeEvent(evnt);
 if (retval == false) return false;
 else return true;
}

Note: When routeEvent calls an event handler, the event handler is
activated. If routeEvent calls an event handler whose function is to display
a new page, the action takes place without returning to the capturing
object.

• Call the handleEvent method of an event receiver. Any object that can
register event handlers is an event receiver. This method explicitly calls the
event handler of the event receiver and bypasses the capturing hierarchy.
For example, if you wanted all click events to go to the first link on the
page, you could use:

function clickHandler(evnt) {
 window.document.links[0].handleEvent(evnt);
}

As long as the link has an onClick handler, the link handles any click event
it receives.

Finally, you need to register the function as the window’s event handler for that
event:

window.onClick = clickHandler;
Chapter 9, Events and Event Handlers 483

General Information about Events
Important If a window with frames wants to capture events in pages loaded from different
locations, you need to use captureEvents in a signed script and call
Window.enableExternalCapture .

In the following example, the window and document capture and release
events:

<HTML>
<SCRIPT>

function fun1(evnt) {
alert ("The window got an event of type: " + evnt.type +

" and will call routeEvent.");
window.routeEvent(evnt);
alert ("The window returned from routeEvent.");
return true;

}

function fun2(evnt) {
alert ("The document got an event of type: " + evnt.type);
return false;

}

function setWindowCapture() {
window.captureEvents(Event.CLICK);

}

function releaseWindowCapture() {
window.releaseEvents(Event.CLICK);

}

function setDocCapture() {
document.captureEvents(Event.CLICK);

}

function releaseDocCapture() {
document.releaseEvents(Event.CLICK);

}

window.onclick=fun1;
document.onclick=fun2;

</SCRIPT>
...
</HTML>
484 JavaScript Reference

event
event
The event object contains properties that describe a JavaScript event, and is
passed as an argument to an event handler when the event occurs.

In the case of a mouse-down event, for example, the event object contains the
type of event (in this case MouseDown), the x and y position of the cursor at
the time of the event, a number representing the mouse button used, and a
field containing the modifier keys (Control, Alt, Meta, or Shift) that were
depressed at the time of the event. The properties used within the event object
vary from one type of event to another. This variation is provided in the
descriptions of individual event handlers.

For more information, see “General Information about Events” on page 481.

Created by event objects are created by Communicator when an event occurs. You do not
create them yourself.

Security Setting any property of this object requires the UniversalBrowserWrite
privilege. In addition, getting the data property of the DragDrop event requires
the UniversalBrowserRead privilege. For information on security in
Navigator 4.0, see Chapter 7, “JavaScript Security,” in the JavaScript Guide.

Property
Summary

Not all of these properties are relevant to each event type. To learn which
properties are used by an event, see the “Event object properties used” section
of the individual event handler.

Client-side object

Implemented in Navigator 4.0

Property Descriptiohn

target String representing the object to which the event was originally sent.
(All events)

type String representing the event type. (All events)

data Returns an array of strings containing the URLs of the dropped
objects. Passed with the DragDrop event.

height Represents the height of the window or frame.
Chapter 9, Events and Event Handlers 485

event
Example The following example uses the event object to provide the type of event to the
alert message.

<A HREF="http://home.netscape.com" onClick='alert("Link got an event: "
+ event.type)'>Click for link event

The following example uses the event object in an explicitly called event
handler.

<SCRIPT>
function fun1(evnt) {

alert ("Document got an event: " + evnt.type);
alert ("x position is " + evnt.layerX);
alert ("y position is " + evnt.layerY);
if (evnt.modifiers & Event.ALT_MASK)

alert ("Alt key was down for event.");

layerX Number specifying either the object width when passed with the
resize event, or the cursor's horizontal position in pixels relative to
the layer in which the event occurred. Note that layerX is
synonymous with x.

layerY Number specifying either the object height when passed with the
resize event, or the cursor's vertical position in pixels relative to the
layer in which the event occurred. Note that layerY is synonymous
with y.

modifiers String specifying the modifier keys associated with a mouse or key
event. Modifier key values are: ALT_MASK, CONTROL_MASK,
SHIFT_MASK, and META_MASK.

pageX Number specifying the cursor's horizontal position in pixels, relative
to the page.

pageY Number specifying the cursor's vertical position in pixels relative to
the page.

screenX Number specifying the cursor's horizontal position in pixels, relative
to the screen.

screenY Number specifying the cursor's vertical position in pixels, relative to
the screen.

which Number specifying either the mouse button that was pressed or the
ASCII value of a pressed key. For a mouse, 1 is the left button, 2 is
the middle button, and 3 is the right button.

width Represents the width of the window or frame.

Property Descriptiohn
486 JavaScript Reference

onAbort
return true;
}

document.onmousedown = fun1;
</SCRIPT>

onAbort
Executes JavaScript code when an abort event occurs; that is, when the user
aborts the loading of an image (for example by clicking a link or clicking the
Stop button).

Syntax onAbort="handlerText"

Parameters

Event properties
used

Examples In the following example, an onAbort handler in an Image object displays a
message when the user aborts the image load:

<IMG NAME="aircraft" SRC="f15e.gif"
onAbort="alert('You didn\'t get to see the image!')">

See also onError , onLoad

For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

Event handler for Image

Implemented in Navigator 3.0

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
Chapter 9, Events and Event Handlers 487

onBlur
onBlur
Executes JavaScript code when a blur event occurs; that is, when a form
element loses focus or when a window or frame loses focus.

Syntax onBlur="handlerText"

Parameters

Description The blur event can result from a call to the Window.blur method or from the
user clicking the mouse on another object or window or tabbing with the
keyboard.

For windows, frames, and framesets, onBlur specifies JavaScript code to
execute when a window loses focus.

A frame’s onBlur event handler overrides an onBlur event handler in the BODY
tag of the document loaded into frame.

Note In Navigator 3.0, on some platforms placing an onBlur event handler in a
FRAMESET tag has no effect.

Event properties
used

Examples Example 1: Validate form input. In the following example, userName is a
required text field. When a user attempts to leave the field, the onBlur event
handler calls the required function to confirm that userName has a legal
value.

Event handler for Button , Checkbox , FileUpload , Layer , Password , Radio ,
Reset , Select , Submit , Text , Textarea , Window

Implemented in Navigator 2.0
Navigator 3.0: event handler of Button , Checkbox ,
FileUpload , Frame , Password , Radio , Reset , Submit , and
Window

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
488 JavaScript Reference

onBlur
<INPUT TYPE="text" VALUE="" NAME="userName"
onBlur="required(this.value)">

Example 2: Change the background color of a window. In the following
example, a window’s onBlur and onFocus event handlers change the
window’s background color depending on whether the window has focus.

<BODY BGCOLOR="lightgrey"
onBlur="document.bgColor='lightgrey'"
onFocus="document.bgColor='antiquewhite'">

Example 3: Change the background color of a frame. The following
example creates four frames. The source for each frame, onblur2.html has the
BODY tag with the onBlur and onFocus event handlers shown in Example 1.
When the document loads, all frames are light grey. When the user clicks a
frame, the onFocus event handler changes the frame’s background color to
antique white. The frame that loses focus is changed to light grey. Note that the
onBlur and onFocus event handlers are within the BODY tag, not the FRAME
tag.

<FRAMESET ROWS="50%,50%" COLS="40%,60%">
<FRAME SRC=onblur2.html NAME="frame1">
<FRAME SRC=onblur2.html NAME="frame2">
<FRAME SRC=onblur2.html NAME="frame3">
<FRAME SRC=onblur2.html NAME="frame4">
</FRAMESET>

The following code has the same effect as the previous code, but is
implemented differently. The onFocus and onBlur event handlers are
associated with the frame, not the document. The onBlur and onFocus event
handlers for the frame are specified by setting the onblur and onfocus
properties.

<SCRIPT>
function setUpHandlers() {

for (var i = 0; i < frames.length; i++) {
frames[i].onfocus=new Function("document.bgColor='antiquewhite'")
frames[i].onblur=new Function("document.bgColor='lightgrey'")

}
}
</SCRIPT>

<FRAMESET ROWS="50%,50%" COLS="40%,60%" onLoad=setUpHandlers()>
<FRAME SRC=onblur2.html NAME="frame1">
<FRAME SRC=onblur2.html NAME="frame2">
<FRAME SRC=onblur2.html NAME="frame3">
<FRAME SRC=onblur2.html NAME="frame4">
</FRAMESET>
Chapter 9, Events and Event Handlers 489

onChange
Example 4: Close a window. In the following example, a window’s onBlur
event handler closes the window when the window loses focus.

<BODY onBlur="window.close()">
This is some text
</BODY>

See also onChange , onFocus

For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

onChange
Executes JavaScript code when a change event occurs; that is, when a Select ,
Text , or Textarea field loses focus and its value has been modified.

Syntax onChange="handlerText"

Parameters

Description Use onChange to validate data after it is modified by a user.

Event properties
used

Examples In the following example, userName is a text field. When a user changes the
text and leaves the field, the onChange event handler calls the checkValue
function to confirm that userName has a legal value.

<INPUT TYPE="text" VALUE="" NAME="userName"
onChange="checkValue(this.value)">

Event handler for FileUpload , Select , Text , Textarea

Implemented in Navigator 2.0 event handler for Select , Text , and Textarea
Navigator 3.0: added as event handler of FileUpload

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
490 JavaScript Reference

onClick
See also onBlur , onFocus

For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

onClick
Executes JavaScript code when a click event occurs; that is, when an object on
a form is clicked. (A Click event is a combination of the MouseDown and
MouseUp events).

Syntax onClick="handlerText"

Parameters

Event properties
used

Event handler for Button , document , Checkbox , Link , Radio , Reset , Submit

Implemented in Navigator 2.0
Navigator 3.0: added the ability to return false to cancel the action
associated with a click event

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

When a link is clicked,
layerX , layerY ,
pageX , pageY ,
screenX , screenY

Represent the cursor location at the time the event
occurred.

which Represents 1 for a left-mouse click and 3 for a right-mouse
click.

modifiers Contains the list of modifier keys held down when the
event occurred.
Chapter 9, Events and Event Handlers 491

onClick
Description For checkboxes, links, radio buttons, reset buttons, and submit buttons,
onClick can return false to cancel the action normally associated with a click
event.

For example, the following code creates a link that, when clicked, displays a
confirm dialog box. If the user clicks the link and then chooses cancel, the page
specified by the link is not loaded.

<A HREF = "http://home.netscape.com/"
onClick="return confirm('Load Netscape home page?')">

Netscape

If the event handler returns false, the default action of the object is canceled as
follows:

• Buttons—no default action; nothing is canceled

• Radio buttons and checkboxes—nothing is set

• Submit buttons—form is not submitted

• Reset buttons—form is not reset

Note In Navigator 3.0, on some platforms, returning false in an onClick event
handler for a reset button has no effect.

Examples Example 1: Call a function when a user clicks a button. Suppose you have
created a JavaScript function called compute . You can execute the compute
function when the user clicks a button by calling the function in the onClick
event handler, as follows:

<INPUT TYPE="button" VALUE="Calculate" onClick="compute(this.form)">

In the preceding example, the keyword this refers to the current object; in this
case, the Calculate button. The construct this.form refers to the form
containing the button.

For another example, suppose you have created a JavaScript function called
pickRandomURL that lets you select a URL at random. You can use onClick to
specify a value for the HREF attribute of the A tag dynamically, as shown in the
following example:

<A HREF=""
onClick="this.href=pickRandomURL()"
onMouseOver="window.status='Pick a random URL'; return true">

Go!
492 JavaScript Reference

onDblClick
In the above example, onMouseOver specifies a custom message for the
browser’s status bar when the user places the mouse pointer over the Go!
anchor. As this example shows, you must return true to set the window.status
property in the onMouseOver event handler.

Example 2: Cancel the checking of a checkbox. The following example
creates a checkbox with onClick . The event handler displays a confirm that
warns the user that checking the checkbox purges all files. If the user chooses
Cancel, onClick returns false and the checkbox is not checked.

<INPUT TYPE="checkbox" NAME="check1" VALUE="check1"
onClick="return confirm('This purges all your files. Are you sure?')"> Remove files

See also For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

onDblClick
Executes JavaScript code when a DblClick event occurs; that is, when the user
double-clicks a form element or a link.

Syntax onDblClick="handlerText"

Parameters

Note DblClick is not implemented on the Macintosh.

Event properties
used

Event handler for document , Link

Implemented in Navigator 4.0

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX, layerY,
pageX, pageY,
screenX, screenY

Represent the cursor location at the time the event
occurred.
Chapter 9, Events and Event Handlers 493

onDragDrop
See also For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

onDragDrop
Executes JavaScript code when a DragDrop event occurs; that is, when the user
drops an object onto the browser window, such as dropping a file.

Syntax onDragDrop="handlerText"

Parameters

Event properties
used

Security Getting the data property of the DragDrop event requires the
UniversalBrowserRead privilege. For information on security in
Navigator 4.0, see Chapter 7, “JavaScript Security,” in the JavaScript Guide.

which Represents 1 for a left-mouse double-click and 3 for a right-
mouse double-click.

modifiers Contains the list of modifier keys held down when the
event occurred.

Event handler for Window

Implemented in Navigator 4.0

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

data Returns an Array of Strings containing the URLs of the dropped objects.

modifier
s

Contains the list of modifier keys held down when the event occurred.

screenX,
screenY

Represent the cursor location at the time the event occurred.
494 JavaScript Reference

onError
Description The DragDrop event is fired whenever a system item (file, shortcut, and so on)
is dropped onto the browser window using the native system's drag and drop
mechanism. The normal response for the browser is to attempt to load the item
into the browser window. If the event handler for the DragDrop event returns
true, the browser loads the item normally. If the event handler returns false, the
drag and drop is canceled.

See also For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

onError
Executes JavaScript code when an error event occurs; that is, when the loading
of a document or image causes an error.

Syntax onError="handlerText"

Parameters

Description An error event occurs only when a JavaScript syntax or runtime error occurs,
not when a browser error occurs. For example, if you try set
window.location.href='notThere.html' and notThere.html does not
exist, the resulting error message is a browser error message; therefore,
onError would not intercept that message. However, an error event is
triggered by a bad URL within an IMG tag or by corrupted image data.

window.onerror applies only to errors that occur in the window containing
window.onerror , not in other windows.

onError can be any of the following:

• null to suppress all JavaScript error dialogs. Setting window.onerror to null
means your users won’t see JavaScript errors caused by your own code.

Event handler for Image , Window

Implemented in Navigator 3.0

handlerText JavaScript code or a call to a JavaScript function.
Chapter 9, Events and Event Handlers 495

onError
• The name of a function that handles errors (arguments are message text,
URL, and line number of the offending line). To suppress the standard
JavaScript error dialog, the function must return true. See Example 3 below.

• A variable or property that contains null or a valid function reference.

If you write an error-handling function, you have three options for reporting
errors:

• Trace errors but let the standard JavaScript dialog report them (use an error
handling function that returns false or does not return a value)

• Report errors yourself and disable the standard error dialog (use an error
handling function that returns true)

• Turn off all error reporting (set the onError event handler to null)

Event properties
used

Examples Example 1: Null event handler. In the following IMG tag, the code
onError="null" suppresses error messages if errors occur when the image
loads.

<IMG NAME="imageBad1" SRC="corrupt.gif" ALIGN="left" BORDER="2"
onError="null">

Example 2: Null event handler for a window. The onError event handler
for windows cannot be expressed in HTML. Therefore, you must spell it all
lowercase and set it in a SCRIPT tag. The following code assigns null to the
onError handler for the entire window, not just the Image object. This
suppresses all JavaScript error messages, including those for the Image object.

<SCRIPT>
window.onerror=null
</SCRIPT>

However, if the Image object has a custom onError event handler, the handler
would execute if the image had an error. This is because
window.onerror=null suppresses JavaScript error messages, not onError
event handlers.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
496 JavaScript Reference

onError
<SCRIPT>
window.onerror=null
function myErrorFunc() {

alert("The image had a nasty error.")
}
</SCRIPT>
<IMG NAME="imageBad1" SRC="corrupt.gif" ALIGN="left" BORDER="2"

onError="myErrorFunc()">

In the following example, window.onerror=null suppresses all error
reporting. Without onerror=null , the code would cause a stack overflow error
because of infinite recursion.

<SCRIPT>
window.onerror = null;
function testErrorFunction() {

testErrorFunction();
}
</SCRIPT>
<BODY onload="testErrorFunction()">
test message
</BODY>

Example 3: Error handling function. The following example defines a
function, myOnError , that intercepts JavaScript errors. The function uses three
arrays to store the message, URL, and line number for each error. When the
user clicks the Display Error Report button, the displayErrors function opens
a window and creates an error report in that window. Note that the function
returns true to suppress the standard JavaScript error dialog.

<SCRIPT>
window.onerror = myOnError

msgArray = new Array()
urlArray = new Array()
lnoArray = new Array()

function myOnError(msg, url, lno) {
msgArray[msgArray.length] = msg
urlArray[urlArray.length] = url
lnoArray[lnoArray.length] = lno
return true

}

function displayErrors() {
win2=window.open('','window2','scrollbars=yes')
win2.document.writeln('Error Report<P>')

for (var i=0; i < msgArray.length; i++) {
win2.document.writeln('Error in file: ' + urlArray[i] + '
')
win2.document.writeln('Line number: ' + lnoArray[i] + '
')
Chapter 9, Events and Event Handlers 497

onError
win2.document.writeln('Message: ' + msgArray[i] + '<P>')
}
win2.document.close()

}
</SCRIPT>

<BODY onload="noSuchFunction()">
<FORM>

<INPUT TYPE="button" VALUE="This button has a syntax error"

onClick="alert('unterminated string)">

<P><INPUT TYPE="button" VALUE="Display Error Report"
onClick="displayErrors()">

</FORM>

This example produces the following output:

Error Report

Error in file: file:///c%7C/temp/onerror.html
Line number: 34
Message: unterminated string literal

Error in file: file:///c%7C/temp/onerror.html
Line number: 34
Message: missing) after argument list

Error in file: file:///c%7C/temp/onerror.html
Line number: 30
Message: noSuchFunction is not defined

Example 4: Event handler calls a function. In the following IMG tag,
onError calls the function badImage if errors occur when the image loads.

<SCRIPT>
function badImage(theImage) {

alert('Error: ' + theImage.name + ' did not load properly.')
}
</SCRIPT>
<FORM>
<IMG NAME="imageBad2" SRC="orca.gif" ALIGN="left" BORDER="2"

onError="badImage(this)">
</FORM>

See also onAbort , onLoad

For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .
498 JavaScript Reference

onFocus
onFocus
Executes JavaScript code when a focus event occurs; that is, when a window,
frame, or frameset receives focus or when a form element receives input focus.

Syntax onFocus="handlerText"

Parameters

Description The focus event can result from a focus method or from the user clicking the
mouse on an object or window or tabbing with the keyboard. Selecting within
a field results in a select event, not a focus event. onFocus executes JavaScript
code when a focus event occurs.

A frame’s onFocus event handler overrides an onFocus event handler in the
BODY tag of the document loaded into frame.

Note that placing an alert in an onFocus event handler results in recurrent
alerts: when you press OK to dismiss the alert, the underlying window gains
focus again and produces another focus event.

Note In Navigator 3.0, on some platforms, placing an onFocus event handler in a
FRAMESET tag has no effect.

Event properties
used

Examples The following example uses an onFocus handler in the valueField Textarea
object to call the valueCheck function.

Event handler for Button , Checkbox , FileUpload , Layer , Password , Radio ,
Reset , Select , Submit , Text , Textarea , Window

Implemented in Navigator 2.0
Navigator 3.0: event handler of Button, Checkbox,
FileUpload, Frame, Password, Radio, Reset,
Submit, and Window
Navigator 4.0: event handler of Layer

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
Chapter 9, Events and Event Handlers 499

onKeyDown
<INPUT TYPE="textarea" VALUE="" NAME="valueField"
onFocus="valueCheck()">

See also examples for onBlur .

See also onBlur , onChange

For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

onKeyDown
Executes JavaScript code when a KeyDown event occurs; that is, when the user
depresses a key.

Syntax onKeyDown="handlerText"

Parameters

Event properties
used

Event handler for document , Image , Link , Textarea

Implemented in Navigator 4.0

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX, layerY,
pageX, pageY,
screenX, screenY

For an event over a window, these represent the cursor
location at the time the event occurred. For an event over a
form, they represent the position of the form element.

which Represents the ASCII value of the key pressed. To get the
actual letter, number, or symbol of the pressed key, use the
String.fromCharCode method. To set this property
when the ASCII value is unknown, use the
String.charCodeAt method.

modifiers Contains the list of modifier keys held down when the
event occurred.
500 JavaScript Reference

onKeyPress
Description A KeyDown event always occurs before a KeyPress event. If onKeyDown returns
false, no KeyPress events occur. This prevents KeyPress events occurring due
to the user holding down a key.

See also onKeyPress , onKeyUp

For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

onKeyPress
Executes JavaScript code when a KeyPress event occurs; that is, when the user
presses or holds down a key.

Syntax onKeyPress="handlerText"

Parameters

Event properties
used

Event handler for document , Image , Link , Textarea

Implemented in Navigator 4.0

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX, layerY,
pageX, pageY,
screenX, screenY

For an event over a window, these represent the cursor
location at the time the event occurred. For an event over a
form, they represent the position of the form element.

which Represents the ASCII value of the key pressed. To get the
actual letter, number, or symbol of the pressed key, use the
String.fromCharCode method. To set this property
when the ASCII value is unknown, use the
String.charCodeAt method.

modifiers Contains the list of modifier keys held down when the
event occurred.
Chapter 9, Events and Event Handlers 501

onKeyUp
Description A KeyPress event occurs immediately after a KeyDown event only if onKeyDown

returns something other than false. A KeyPress event repeatedly occurs until
the user releases the key. You can cancel individual KeyPress events.

See also onKeyDown, onKeyUp

For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

onKeyUp
Executes JavaScript code when a KeyUp event occurs; that is, when the user
releases a key.

Syntax onKeyUp="handlerText"

Parameters

Event properties
used

Event handler for document , Image , Link , Textarea

Implemented in Navigator 4.0

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX, layerY,
pageX, pageY,
screenX, screenY

For an event over a window, these represent the cursor
location at the time the event occurred. For an event over a
form, they represent the position of the form element.

which Represents the ASCII value of the key pressed. To get the
actual letter, number, or symbol of the pressed key, use the
String.fromCharCode method. To set this property
when the ASCII value is unknown, use the
String.charCodeAt method.

modifiers Contains the list of modifier keys held down when the
event occurred.
502 JavaScript Reference

onLoad
See also For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

onLoad
Executes JavaScript code when a load event occurs; that is, when the browser
finishes loading a window or all frames within a FRAMESET tag.

Syntax onLoad="handlerText"

Parameters

Description Use the onLoad event handler within either the BODY or the FRAMESET tag, for
example, <BODY onLoad="..."> .

In a FRAMESET and FRAME relationship, an onLoad event within a frame (placed
in the BODY tag) occurs before an onLoad event within the FRAMESET (placed in
the FRAMESET tag).

For images, the onLoad event handler indicates the script to execute when an
image is displayed. Do not confuse displaying an image with loading an image.
You can load several images, then display them one by one in the same Image
object by setting the object’s src property. If you change the image displayed
in this way, onLoad executes every time an image is displayed, not just when
the image is loaded into memory.

If you specify an onLoad event handler for an Image object that displays a
looping GIF animation (multi-image GIF), each loop of the animation triggers
the onLoad event, and the event handler executes once for each loop.

You can use the onLoad event handler to create a JavaScript animation by
repeatedly setting the src property of an Image object. See Image for
information.

Event handler for Image , Layer , Window

Implemented in Navigator 2.0
Navigator 3.0: event handler of Image

handlerText JavaScript code or a call to a JavaScript function.
Chapter 9, Events and Event Handlers 503

onLoad
Event properties
used

Examples Example 1: Display message when page loads. In the following example,
the onLoad event handler displays a greeting message after a Web page is
loaded.

<BODY onLoad="window.alert("Welcome to the Brave New World home page!")>

Example 2: Display alert when image loads. The following example creates
two Image objects, one with the Image constructor and one with the IMG tag.
Each Image object has an onLoad event handler that calls the displayAlert
function, which displays an alert. For the image created with the IMG tag, the
alert displays the image name. For the image created with the Image
constructor, the alert displays a message without the image name. This is
because the onLoad handler for an object created with the Image constructor
must be the name of a function, and it cannot specify parameters for the
displayAlert function.

<SCRIPT>
imageA = new Image(50,50)
imageA.onload=displayAlert
imageA.src="cyanball.gif"

function displayAlert(theImage) {
if (theImage==null) {

alert('An image loaded')
}
else alert(theImage.name + ' has been loaded.')

}
</SCRIPT>

<IMG NAME="imageB" SRC="greenball.gif" ALIGN="top"
onLoad=displayAlert(this)>

Example 3: Looping GIF animation. The following example displays an
image, birdie.gif , that is a looping GIF animation. The onLoad event handler
for the image increments the variable cycles , which keeps track of the number
of times the animation has looped. To see the value of cycles , the user clicks
the button labeled Count Loops.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

width, height For an event over a window, but not over a layer, these
represent the width and height of the window.
504 JavaScript Reference

onLoad
<SCRIPT>
var cycles=0
</SCRIPT>
<IMG ALIGN="top" SRC="birdie.gif" BORDER=0

onLoad="++cycles">
<INPUT TYPE="button" VALUE="Count Loops"

onClick="alert('The animation has looped ' + cycles + ' times.')">

Example 4: Change GIF animation displayed. The following example uses
an onLoad event handler to rotate the display of six GIF animations. Each
animation is displayed in sequence in one Image object. When the document
loads, !anim0.html is displayed. When that animation completes, the onLoad
event handler causes the next file, !anim1.html , to load in place of the first
file. After the last animation, !anim5.html , completes, the first file is again
displayed. Notice that the changeAnimation function does not call itself after
changing the src property of the Image object. This is because when the src
property changes, the image’s onLoad event handler is triggered and the
changeAnimation function is called.

<SCRIPT>
var whichImage=0
var maxImages=5

function changeAnimation(theImage) {
++whichImage
if (whichImage <= maxImages) {

var imageName="!anim" + whichImage + ".gif"
theImage.src=imageName

} else {
whichImage=-1
return

}
}
</SCRIPT>

<IMG NAME="changingAnimation" SRC="!anim0.gif" BORDER=0 ALIGN="top"
onLoad="changeAnimation(this)">

See also examples for Image .

See also onAbort , onError , onUnload

For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .
Chapter 9, Events and Event Handlers 505

onMouseDown
onMouseDown
Executes JavaScript code when a MouseDown event occurs; that is, when the
user depresses a mouse button.

Syntax onMouseDown="handlerText"

Parameters

Event properties
used

Description If onMouseDown returns false, the default action (entering drag mode, entering
selection mode, or arming a link) is canceled.

Arming is caused by a MouseDown over a link. When a link is armed it changes
color to represent its new state.

See also For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

Event handler for Button , document , Link

Implemented in Navigator 4.0

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX, layerY,
pageX, pageY,
screenX, screenY

Represent the cursor location at the time the MouseDown
event occurred.

which Represents 1 for a left-mouse-button down and 3 for a
right-mouse-button down.

modifiers Contains the list of modifier keys held down when the
MouseDown event occurred.
506 JavaScript Reference

onMouseMove
onMouseMove
Executes JavaScript code when a MouseMove event occurs; that is, when the
user moves the cursor.

Syntax onMouseMove="handlerText"

Parameters

Event of Because mouse movement happens so frequently, by default, onMouseMove is
not an event of any object. You must explicitly set it to be associated with a
particular object.

Event properties
used

Description The MouseMove event is sent only when a capture of the event is requested by
an object (see “Events in Navigator 4.0” on page 482).

See also document.captureEvents

For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

Event handler for None

Implemented in Navigator 4.0

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX, layerY,
pageX, pageY,
screenX, screenY

Represent the cursor location at the time the MouseMove
event occurred.
Chapter 9, Events and Event Handlers 507

onMouseOut
onMouseOut
Executes JavaScript code when a MouseOut event occurs; that is, each time the
mouse pointer leaves an area (client-side image map) or link from inside that
area or link.

Syntax onMouseOut="handlerText"

Parameters

Description If the mouse moves from one area into another in a client-side image map,
you’ll get onMouseOut for the first area, then onMouseOver for the second.

Area objects that use the onMouseOut event handler must include the HREF
attribute within the AREA tag.

You must return true within the event handler if you want to set the status or
defaultStatus properties with onMouseOver .

Event properties
used

Examples See the examples for Link .

See also onMouseOver

For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

Event handler for Layer , Link

Implemented in Navigator 3.0

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX, layerY,
pageX, pageY,
screenX, screenY

Represent the cursor location at the time the MouseOut
event occurred.
508 JavaScript Reference

onMouseOver
onMouseOver
Executes JavaScript code when a MouseOver event occurs; that is, once each
time the mouse pointer moves over an object or area from outside that object
or area.

Syntax onMouseOver="handlerText"

Parameters

Description If the mouse moves from one area into another in a client-side image map,
you’ll get onMouseOut for the first area, then onMouseOver for the second.

Area objects that use onMouseOver must include the HREF attribute within the
AREA tag.

You must return true within the event handler if you want to set the status or
defaultStatus properties with onMouseOver .

Event properties
used

Examples By default, the HREF value of an anchor displays in the status bar at the bottom
of the browser when a user places the mouse pointer over the anchor. In the
following example, onMouseOver provides the custom message “Click this if
you dare.”

<A HREF="http://home.netscape.com/"
onMouseOver="window.status='Click this if you dare!'; return true">

Click me

Event handler for Layer , Link

Implemented in Navigator 2.0
Navigator 3.0: event handler of Area

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX, layerY,
pageX, pageY,
screenX, screenY

Represent the cursor location at the time the MouseOver
event occurred.
Chapter 9, Events and Event Handlers 509

onMouseUp
See onClick for an example of using onMouseOver when the A tag’s HREF
attribute is set dynamically.

See also examples for Link .

See also onMouseOut

For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

onMouseUp
Executes JavaScript code when a MouseUp event occurs; that is, when the user
releases a mouse button.

Syntax onMouseUp="handlerText"

Parameters

Event properties
used

Event handler for Button , document , Link

Implemented in Navigator 4.0

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

layerX, layerY,
pageX, pageY,
screenX, screenY

Represent the cursor location at the time the MouseUp
event occurred.

which Represents 1 for a left-mouse-button up and 3 for a right-
mouse-button up.

modifiers Contains the list of modifier keys held down when the
MouseUp event occurred.
510 JavaScript Reference

onMove
Description If onMouseUp returns false, the default action is canceled. For example, if
onMouseUp returns false over an armed link, the link is not triggered. Also, if
MouseUp occurs over an unarmed link (possibly due to onMouseDown returning
false), the link is not triggered.

Note Arming is caused by a MouseDown over a link. When a link is armed it changes
color to represent its new state.

See also For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

onMove
Executes JavaScript code when a move event occurs; that is, when the user or
script moves a window or frame.

Syntax onMove="handlerText"

Parameters

Event properties
used

See also For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

Event handler for Window

Implemented in Navigator 4.0

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

screenX,
screenY

Represent the position of the top-left corner of the window or frame.
Chapter 9, Events and Event Handlers 511

onReset
onReset
Executes JavaScript code when a reset event occurs; that is, when a user resets
a form (clicks a Reset button).

Syntax onReset="handlerText"

Parameters

Examples The following example displays a Text object with the default value “CA” and
a reset button. If the user types a state abbreviation in the Text object and then
clicks the reset button, the original value of “CA” is restored. The form’s
onReset event handler displays a message indicating that defaults have been
restored.

<FORM NAME="form1" onReset="alert('Defaults have been restored.')">
State:
<INPUT TYPE="text" NAME="state" VALUE="CA" SIZE="2"><P>
<INPUT TYPE="reset" VALUE="Clear Form" NAME="reset1">
</FORM>

Event properties
used

See also Form.reset , Reset

For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

Event handler for Form

Implemented in Navigator 3.0

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
512 JavaScript Reference

onResize
onResize
Executes JavaScript code when a resize event occurs; that is, when a user or
script resizes a window or frame.

Syntax onResize="handlerText"

Parameters

Event properties
used

Description This event is sent after HTML layout completes within the new window inner
dimensions. This allows positioned elements and named anchors to have their
final sizes and locations queried, image SRC properties can be restored
dynamically, and so on.

See also For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

onSelect
Executes JavaScript code when a select event occurs; that is, when a user
selects some of the text within a text or textarea field.

Event handler for Window

Implemented in Navigator 4.0

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

width,
height

Represent the width and height of the window or frame.

Event handler for Text , Textarea

Implemented in Navigator 2.0
Chapter 9, Events and Event Handlers 513

onSubmit
Syntax onSelect="handlerText"

Parameters

Event properties
used

Examples The following example uses onSelect in the valueField Text object to call
the selectState function.

<INPUT TYPE="text" VALUE="" NAME="valueField" onSelect="selectState()">

See also For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

onSubmit
Executes JavaScript code when a submit event occurs; that is, when a user
submits a form.

Syntax onSubmit="handlerText"

Parameters

Security Navigator 4.0: Submitting a form to a mailto: or news: URL requires the
UniversalSendMail privilege. For information on security in Navigator 4.0,
see Chapter 7, “JavaScript Security,” in the JavaScript Guide.

handlerText JavaScript code or a call to a JavaScript function.

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

Event handler for Form

Implemented in Navigator 2.0

handlerText JavaScript code or a call to a JavaScript function.
514 JavaScript Reference

onUnload
Description You can use onSubmit to prevent a form from being submitted; to do so, put a
return statement that returns false in the event handler. Any other returned
value lets the form submit. If you omit the return statement, the form is
submitted.

Event properties
used

Examples In the following example, onSubmit calls the validate function to evaluate
the data being submitted. If the data is valid, the form is submitted; otherwise,
the form is not submitted.

<FORM onSubmit="return validate(this)">
...
</FORM>

See also the examples for Form.

See also Submit , Form.submit

For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

onUnload
Executes JavaScript code when an unload event occurs; that is, when the user
exits a document.

Syntax onUnload="handlerText"

Parameters

type Indicates the type of event.

target Indicates the object to which the event was originally sent.

Event handler for Window

Implemented in Navigator 2.0

handlerText JavaScript code or a call to a JavaScript function.
Chapter 9, Events and Event Handlers 515

onUnload
Description Use onUnload within either the BODY or the FRAMESET tag, for example, <BODY

onUnload="..."> .

In a frameset and frame relationship, an onUnload event within a frame (placed
in the BODY tag) occurs before an onUnload event within the frameset (placed
in the FRAMESET tag).

Event properties
used

Examples In the following example, onUnload calls the cleanUp function to perform
some shutdown processing when the user exits a Web page:

<BODY onUnload="cleanUp()">

See also onLoad

For general information on event handlers, see “General Information about
Events” on page 481.

For information about the event object, see event .

type Indicates the type of event.

target Indicates the object to which the event was originally sent.
516 JavaScript Reference

C h a p t e r

10
LiveWire Database Service
This chapter contains the server-side objects associated with LiveWire:
database , DbPool , Connection , Cursor , Stproc , Resultset and blob .

Table 10.1 summarizes the objects in this chapter.

Table 10.1 LiveWire objects

Object Description

blob Provides functionality for displaying and linking to BLOb
data.

Connection Represents a single database connection from a pool of
connections.

Cursor Represents a database cursor.

database Represents a database connection.

DbPool Represents a pool of database connections.

Resultset Represents the information returned by a database stored
procedure.

Stproc Represents a database stored procedure.
Chapter 10, LiveWire Database Service 517

database
database
Lets an application interact with a relational database.

Created by The JavaScript runtime engine on the server automatically creates the database
object. You indicate that you want to use this object by calling its connect
method.

Description The JavaScript runtime engine on the server creates a database object when an
application connects to a database server. Each application has only one
database object. You can use the database object to interact with the
database on the server. Alternatively, you can use the DbPool and Connection
objects.

You can use the database object to connect to the database server and
perform the following tasks:
• Display the results of a query as an HTML table
• Execute SQL statements on the database server
• Manage transactions
• Run stored procedures
• Handle errors returned by the target database

The scope of a database connection created with the database object is a single
HTML page. That is, as soon as control leaves the HTML page, the runtime
engine closes the database connection. You should close all open cursors,
stored-procedure objects, and result sets before the end of the page.

If possible, your application should make the database connection on its initial
page. Doing so prevents conflicts from multiple client requests trying to
manipulate the status of the connections at once.

Internally, JavaScript creates the database object as an instance of the
DbBuiltin class. In most circumstances, this is an implementation detail you
do not need to be aware of, because you cannot create instances of this class.
However, you can use the prototype property of the DbBuiltin class to add
a property to the predefined database object. If you do so, that addition

Server-side object

Implemented in LiveWire 1.0
Netscape Server 3.0: added storedProc and storedProcArgs
methods.
518 JavaScript Reference

database
applies to the database object when used in all applications on your server,
not just in the single application that made the change. This allows you to
expand the capabilities of this object for your entire server.

Property
Summary

Method Summary

Property Descriptiohn

prototype Allows the addition of properties to the database object.

Method Descriptiohn

beginTransaction Begins an SQL transaction.

commitTransaction Commits the current SQL transaction.

connect Connects to a particular configuration of database and
user.

connected Returns true if the database pool (and hence this
connection) is connected to a database.

cursor Creates a database cursor for the specified SQL SELECT
statement.

disconnect Disconnects all connections from the database.

execute Performs the specified SQL statement.

majorErrorCode Major error code returned by the database server or
ODBC.

majorErrorMessage Major error message returned by the database server or
ODBC.

minorErrorCode Secondary error code returned by vendor library.

minorErrorMessage Secondary message returned by vendor library.

rollbackTransacti
on

Rolls back the current SQL transaction.

SQLTable Displays query results. Creates an HTML table for results
of an SQL SELECT statement.

storedProc Creates a stored-procedure object and runs the specified
stored procedure.
Chapter 10, LiveWire Database Service 519

database
Examples The following example creates a database object and opens a standard
connection to the customer database on an Informix server. The name of the
server is blue , the user name is ADMIN, and the password is MANAGER.

database.connect("INFORMIX", "blue", "ADMIN", "MANAGER", "inventory")

In this example, many clients can connect to the database simultaneously, but
they all share the same connection, user name, and password.

See also Cursor , database.connect

Transactions

A transaction is a group of database actions that are performed together. Either
all the actions succeed together or all fail together. When you attempt to have
all of the actions make permanent changes to the database, you are said to
commit a transaction. You can also roll back a transaction that you have not
committed; this cancels all the actions.

You can use explicit transaction control for any set of actions, by using the
beginTransaction , commitTransaction , and rollbackTransaction
methods. If you do not control transactions explicitly, the runtime engine uses
the underlying database’s autocommit feature to treat each database
modification as a separate transaction. Each statement is either committed or
rolled back immediately, based on the success or failure of the individual
statement. Explicitly managing transactions overrides this default behavior.

In some databases, such as Oracle, autocommit is an explicit feature that
LiveWire turns on for individual statements. In others, such as Informix, it is the
default behavior when you do not create a transaction.

Note You must use explicit transaction control any time you make changes to a
database. If you do not, your database may return errors; even it does not, you
cannot be guaranteed of data integrity without using transactions. In addition,
any time you use cursors, you are encourage to use explicit transactions to
control the consistency of your data.

storedProcArgs Creates a prototype for a Sybase stored procedure.

toString Returns a string representing the specified object.

Method Descriptiohn
520 JavaScript Reference

database
For the database object, the scope of a transaction is limited to the current
request (HTML page) in an application. If the application exits the page before
calling the commitTransaction or rollbackTransaction method, then the
transaction is automatically either committed or rolled back, depending on the
setting for the commitflag parameter when the connection was established.
This parameter is provided either to the pool object’s constructor or to its
connect method. For further information, see connect .

Properties

prototype

Represents the prototype for this class. You can use the prototype of the
DbBuiltin class to add properties or methods to the database object. For
information on prototypes, see Function.prototype .

Methods

beginTransaction

Begins a new SQL transaction.

Syntax beginTransaction()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Property of database

Implemented in LiveWire 1.0

Method of database

Implemented in LiveWire 1.0
Chapter 10, LiveWire Database Service 521

database
Description All subsequent actions that modify the database are grouped with this
transaction, known as the current transaction.

For the database object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the commitTransaction or rollbackTransaction method, then the
transaction is automatically either committed or rolled back, based on the
setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection by calling
database.connect .

For Connection objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the commitTransaction or rollbackTransaction method,
then the transaction is automatically either committed or rolled back, based on
the setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection by calling the
connect method or in the DbPool constructor.

If there is no current transaction (that is, if the application has not called
beginTransaction), calls to commitTransaction and
rollbackTransaction are ignored.

The LiveWire Database Service does not support nested transactions. If you call
beginTransaction when a transaction is already open (that is, you’ve called
beginTransaction and have yet to commit or roll back that transaction),
you’ll get an error message.

Examples This example updates the rentals table within a transaction. The values of
customerID and videoID are passed into the cursor method as properties of
the request object. When the videoReturn Cursor object opens, the next
method navigates to the only record in the virtual table and updates the value
in the returnDate field.

The variable x is assigned a database status code to indicate if the updateRow
method is successful. If updateRow succeeds, the value of x is 0, and the
transaction is committed; otherwise, the transaction is rolled back.

// Begin a transaction
database.beginTransaction();

// Create a Date object with the value of today's date
today = new Date();

// Create a cursor with the rented video in the virtual table
videoReturn = database.cursor("SELECT * FROM rentals WHERE
522 JavaScript Reference

database
customerId = " + request.customerID + " AND
videoId = " + request.videoID, true);

// Position the pointer on the first row of the cursor
// and update the row
videoReturn.next()
videoReturn.returndate = today;
x = videoReturn.updateRow("rentals");

// End the transaction by committing or rolling back
if (x == 0) {

database.commitTransaction() }
else {

database.rollbackTransaction() }

// Close the cursor
videoReturn.close();

commitTransaction

Commits the current transaction.

Syntax commitTransaction()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description This method attempts to commit all actions since the last call to
beginTransaction .

For the database object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the commitTransaction or rollbackTransaction method, then the
transaction is automatically either committed or rolled back, based on the
setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection with the database
or DbPool object.

Method of database

Implemented in LiveWire 1.0
Chapter 10, LiveWire Database Service 523

database
For Connection objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the commitTransaction or rollbackTransaction method,
then the transaction is automatically either committed or rolled back, based on
the commitFlag value.

If there is no current transaction (that is, if the application has not called
beginTransaction), calls to commitTransaction and
rollbackTransaction are ignored.

The LiveWire Database Service does not support nested transactions. If you call
beginTransaction when a transaction is already open (that is, you’ve called
beginTransaction and have yet to commit or roll back that transaction),
you’ll get an error message.

connect

Connects the pool to a particular configuration of database and user.

Syntax connect (dbtype, serverName, username, password, databaseName)

connect (dbtype, serverName, username, password, databaseName,
maxConnections)

connect (dbtype, serverName, username, password, databaseName,
maxConnections, commitflag)

Parameters

Method of database

Implemented in LiveWire 1.0

dbtype Database type; one of ORACLE, SYBASE, INFORMIX, DB2, or ODBC.
524 JavaScript Reference

database
serverName Name of the database server to which to connect. The server name
typically is established when the database is installed and is different
for different database types:
DB2: Local database alias. On both NT and UNIX, this is set up by the
client or the DB2 Command Line Processor.
Informix: Informix server. On NT, this is specified with the
setnet32 utility; on UNIX, in the sqlhosts file.
Oracle: Service. On both NT and UNIX, this specified in the
tnsnames.ora file. On NT, you can use the SQL*Net easy
configuration to specify it. If your Oracle database server is local,
specify the empty string for this argument.
ODBC: Data source name. On NT, this is specified in the ODBC
Administrator; on UNIX, in the .odbc.ini file. If you are using the
Web Server as a user the file .odbc.ini must be in your home
directory; if as a system, it must be in the root directory.
Sybase: Server name (the DSQUERY parameter). On NT, this is
specified with the sqledit utility; on UNIX, with the sybinit
utility.
If in doubt, see your database or system administrator. For ODBC,
this is the name of the ODBC service as specified in Control Panel.

userName Name of the user to connect to the database. Some relational
database management systems (RDBMS) require that this be the same
as your operating system login name; others maintain their own
collections of valid user names. See your system administrator if you
are in doubt.

password User’s password. If the database does not require a password, use an
empty string ("").

databaseName Name of the database to connect to for the given serverName . If
your database server supports the notion of multiple databases on a
single server, supply the name of the database to use. If it does not,
use an empty string (""). For Oracle, ODBC, and DB2, you must
always use an empty string.
For Oracle, specify this information in the tnsnames.ora file.
For ODBC, if you want to connect to a particular database, specify
the database name specified in the datasource definition.
For DB2, there is no concept of a database name; the database name
is always the server name (as specified with serverName).
Chapter 10, LiveWire Database Service 525

database
Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description When you call this method, the runtime engine first closes and releases any
currently open connections. It then reconnects the pool with the new
configuration. You should be sure that all connections have been released
before calling this method.

The first version of this method creates and caches one connection. When this
connection goes out of scope, pending transactions are rolled back.

maxConnections (Optional) Number of connections to be created and cached in the
pool. The runtime engine attempts to create as many connections as
specified with this parameter. If successful, it stores those connections
for later use.
If you do not supply this parameter, its value is whatever you specify
in the Application Manager when you install the application as the
value for Built-in Maximum Database Connections.
Remember that your database client license probably specifies a
maximum number of connections. Do not set this parameter to a
number higher than your license allows. For Sybase, you can have at
most 100 connections.
If your database client library is not multithreaded, it can only
support one connection at a time. In this case, your application
performs as though you specified 1 for this parameter. For a current
list of which database client libraries are multithreaded, see the
Enterprise Server 3.0 Release Notes

commitFlag (Optional) A Boolean value indicating whether to commit a pending
transaction when the connection is released or the object is finalized.
(If the transaction is on a single page, the object is finalized at the
end of the page. If the transaction spans multiple pages, the object is
finalized when the connection returns to the pool.)
If this parameter is false, a pending transaction is rolled back. If this
parameter is true, a pending transaction if committed. For DbPool ,
the default value is false; for database , the default value is true. If
you specify this parameter, you must also specify the
maxConnections parameter.
526 JavaScript Reference

database
The second version of this method attempts to create as many connections as
specified by the maxConnections parameter. If successful, it stores those
connections for later use. If the runtime engine does not obtain the requested
connections, it returns an error. When this connection goes out of scope,
pending transactions are rolled back.

The third version of this method does everything the second version does. In
addition, the commitflag parameter indicates what to do with pending
transactions when this connection goes out of scope. If this parameter is false
(the default), a pending transaction is rolled back. If this parameter is true, a
pending transaction if committed.

If possible, your application should call this method on its initial page. Doing
so prevents conflicts from multiple client requests trying to connect and
disconnect.

Example The following statement creates four connections to an Informix database
named mydb on a server named myserver, with user name SYSTEM and
password MANAGER. Pending transactions are rolled back at the end of a client
request:

connected

Tests whether the database pool and all of its connections are connected to a
database.

Syntax connected()

Parameters None.

Returns True if the pool (and hence a particular connection in the pool) is currently
connected to a database; otherwise, false.

Description The connected method indicates whether this object is currently connected to
a database.

Method of database

Implemented in LiveWire 1.0
Chapter 10, LiveWire Database Service 527

database
If this method returns false for a Connection object, you cannot use any other
methods of that object. You must reconnect to the database, using the DbPool
object, and then get a new Connection object. Similarly, if this method returns
false for the database object, you must reconnect before using other methods
of that object.

Example Example 1: The following code fragment checks to see if the connection is
currently open. If it’s not, it reconnects the pool and reassigns a new value to
the myconn variable.

if (!myconn.connected()) {
mypool.connect ("INFORMIX", "myserver", "SYSTEM", "MANAGER", "mydb",

4);
myconn = mypool.connection;

}

Example 2: The following example uses an if condition to determine if an
application is connected to a database server. If the application is connected,
the isConnectedRoutine function runs; if the application is not connected,
the isNotConnected routine runs.

if(database.connected()) {
isConnectedRoutine() }

else {
isNotConnectedRoutine() }

cursor

Creates a Cursor object.

Syntax cursor("sqlStatement",updatable)

Parameters

Returns A new Cursor object.

Method of database

Implemented in LiveWire 1.0

sqlStatement A JavaScript string representing a SQL SELECT statement supported
by the database server.

updatable (Optional) A Boolean parameter indicating whether or not the
cursor is updatable.
528 JavaScript Reference

database
Description The cursor method creates a Cursor object that contains the rows returned by
a SQL SELECT statement. The SELECT statement is passed to the cursor
method as the sqlStatement argument. If the SELECT statement does not
return any rows, the resulting Cursor object has no rows. The first time you
use the next method on the object, it returns false.

You can perform the following tasks with the Cursor object:
• Modify data in a server table.
• Navigate in a server table.
• Customize the display of the virtual table returned by a database query.
• Run stored procedures.

The cursor method does not automatically display the returned data. To
display this data, you must create custom HTML code. This HTML code may
display the rows in an HTML table, as shown in Example 3. The SQLTable
method is an easier way to display the output of a database query, but you
cannot navigate, modify data, or control the format of the output.

The optional parameter updatable specifies whether you can modify the
Cursor object you create with the cursor method. To create a Cursor object
you can modify, specify updatable as true. If you do not specify a value for
the updatable parameter, it is false by default.

If you create an updatable Cursor object, the virtual table returned by the
sqlStatement parameter must be updatable. For example, the SELECT
statement in the sqlStatement parameter cannot contain a GROUP BY clause;
in addition, the query usually must retrieve key values from a table. For more
information on constructing updatable queries, consult your database vendor’s
documentation.

Examples Example 1. The following example creates the updatable cursor custs and
returns the columns ID , CUST_NAME, and CITY from the customer table:

custs = database.cursor("select id, cust_name, city from customer",
true)

Example 2. You can construct the SELECT statement with the string
concatenation operator (+) and string variables such as client or request
property values, as shown in the following example:

custs = database.cursor("select * from customer
where customerID = " + request.customerID);
Chapter 10, LiveWire Database Service 529

database
Example 3. The following example demonstrates how to format the virtual
table returned by the cursor method as an HTML table. This example first
creates Cursor object named videoSet and then displays two columns of its
data (videoSet.title and videoSet.synopsis).

// Create the videoSet cursor
<SERVER>
videoSet = database.cursor("select * from videos

where videos.numonhand > 0 order by title");
</SERVER>

// Begin creating an HTML table to contain the virtual table
// Specify titles for the two columns in the virtual table
<TABLE BORDER>
<CAPTION> Videos on Hand </CAPTION>
<TR>

<TH>Title</TH>
<TH>Synopsis</TH>

</TR>

// Use a while loop to iterate over each row in the cursor
<SERVER>
while(videoSet.next()) {
</SERVER>

// Use write statements to display the data in both columns
<TR>

<TH>
 <SERVER>write(videoSet.title)</SERVER></TH>

<TD><SERVER>write(videoSet.synopsis)</SERVER></TD>
</TR>

// End the while loop
<SERVER>
}
</SERVER>

// End the HTML table
</TABLE>

The values in the videoSet.title column are displayed within the A tag so a
user can click them as links. When a user clicks a title, the rent.html page
opens and the column value videoSet.id is passed to it as the value of
request.videoID .

See also database.SQLTable , database.cursor
530 JavaScript Reference

database
disconnect

Disconnects all connections in the pool from the database.

Syntax disconnect()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description Before calling the disconnect method, you must first call the release method
for all connections in this database pool. Otherwise, the connection is still
considered in use by the system, so the disconnect waits until all connections
are released.

After disconnecting from a database, the only methods of this object you can
use are connect and connected .

Examples The following example uses an if condition to determine if an application is
connected to a database server. If the application is connected, the application
calls the disconnect method; if the application is not connected, the
isNotConnected routine runs.

if(database.connected()) {
database.disconnect() }

else {
isNotConnectedRoutine() }

execute

Performs the specified SQL statement. Use for SQL statements other than
queries.

Syntax execute (stmt)

Method of database

Implemented in LiveWire 1.0

Method of database

Implemented in LiveWire 1.0
Chapter 10, LiveWire Database Service 531

database
Parameters

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description This method enables an application to execute any data definition language
(DDL) or data manipulation language (DML) SQL statement supported by the
database server that does not return a cursor, such as CREATE, ALTER, or DROP.

Each database supports a standard core of DDL and DML statements. In
addition, they may each also support DDL and DML statements specific to that
database vendor. You can use execute to call any of those statements.
However, each database vendor may also provide functions you can use with
the database that are not DDL or DML statements. You cannot use execute to
call those functions. For example, you cannot call the Oracle describe
function or the Informix load function from the execute method.

Although technically you can use execute to perform data modification
(INSERT, UPDATE, and DELETE statements), you should instead use Cursor
objects. This makes your application more database-independent. Cursors also
provide support for binary large object (BLOb) data.

When using the execute method, your SQL statement must strictly conform to
the syntax requirements of the database server. For example, some servers
require each SQL statement to be terminated by a semicolon. See your server
documentation for more information.

If you have not explicitly started a transaction, the single statement is
automatically committed.

Examples In the following example, the execute method is used to delete a customer
from the customer table. customer.ID represents the unique ID of a customer
that is in the ID column of the customer table. The value for customer.ID is
passed into the DELETE statement as the value of the ID property of request .

if(request.ID != null) {
database.execute("delete from customer

where customer.ID = " + request.ID)
}

stmt A string representing the SQL statement to execute.
532 JavaScript Reference

database
majorErrorCode

Major error code returned by the database server or ODBC.

Syntax majorErrorCode()

Parameters None.

Returns The result returned by this method depends on the database server being used:

• Informix: the Informix error code.

• Oracle: the code as reported by Oracle Call-level Interface (OCI).

• Sybase: the DB-Library error number or the SQL server message number.

Description SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multiuser
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire™ Database Service
provides two ways of getting error information: from the status code returned
by various methods or from special properties containing error messages and
codes.

Status codes are integers between 0 and 27, with 0 indicating a successful
execution of the statement and other numbers indicating an error, as shown in
Table 10.2.:

Method of database

Implemented in LiveWire 1.0

Table 10.2 Database status codes.

Status
Code

Explanation Status
Code

Explanation

0 No error 14 Null reference parameter

1 Out of memory 15 Connection object not
found

2 Object never initialized 16 Required information is
missing

3 Type conversion error 17 Object cannot support
multiple readers
Chapter 10, LiveWire Database Service 533

database
Examples This example updates the rentals table within a transaction. The updateRow
method assigns a database status code to the statusCode variable to indicate
whether the method is successful.

If updateRow succeeds, the value of statusCode is 0, and the transaction is
committed. If updateRow returns a statusCode value of either five or seven,
the values of majorErrorCode , majorErrorMessage , minorErrorCode , and
minorErrorMessage are displayed. If statusCode is set to any other value,
the errorRoutine function is called.

database.beginTransaction()
statusCode = cursor.updateRow("rentals")

if (statusCode == 0) {
database.commitTransaction()
}

4 Database not registered 18 Object cannot support
deletions

5 Error reported by server 19 Object cannot support
insertions

6 Message from server 20 Object cannot support
updates

7 Error from vendor’s library 21 Object cannot support
updates

8 Lost connection 22 Object cannot support
indices

9 End of fetch 23 Object cannot be dropped

10 Invalid use of object 24 Incorrect connection
supplied

11 Column does not exist 25 Object cannot support
privileges

12 Invalid positioning within
object (bounds error)

26 Object cannot support
cursors

13 Unsupported feature 27 Unable to open

Table 10.2 Database status codes. (Continued)

Status
Code

Explanation Status
Code

Explanation
534 JavaScript Reference

database
if (statusCode == 5 || statusCode == 7) {
write("The operation failed to complete.
"
write("Contact your system administrator with the following:<P>"
write("The value of statusCode is " + statusCode + "
")
write("The value of majorErrorCode is " +

database.majorErrorCode() + "
")
write("The value of majorErrorMessage is " +

database.majorErrorMessage() + "
")
write("The value of minorErrorCode is " +

database.minorErrorCode() + "
")
write("The value of minorErrorMessage is " +

database.minorErrorMessage() + "
")
database.rollbackTransaction()
}

else {
errorRoutine()
}

majorErrorMessage

Major error message returned by database server or ODBC. For server errors,
this typically corresponds to the server’s SQLCODE.

Syntax majorErrorMessage()

Parameters None.

Returns A string describing that depends on the database server:

• Informix: “Vendor Library Error: string,” where string is the error text from
Informix.

• Oracle: “Server Error: string,” where string is the translation of the return
code supplied by Oracle.

• Sybase: “Vendor Library Error: string,” where string is the error text from
DB-Library or “Server Error string,” where string is text from the SQL server,
unless the severity and message number are both 0, in which case it returns
just the message text.

Method of database

Implemented in LiveWire 1.0
Chapter 10, LiveWire Database Service 535

database
Description SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multiuser
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire Database Service
provides two ways of getting error information: from the status code returned
by connection and DbPool methods or from special connection or DbPool
properties containing error messages and codes.

Examples See database.majorErrorCode .

minorErrorCode

Secondary error code returned by database vendor library.

Syntax minorErrorCode()

Parameters None.

Returns The result returned by this method depends on the database server:

• Informix: the ISAM error code, or 0 if there is no ISAM error.

• Oracle: the operating system error code as reported by OCI.

• Sybase: the severity level, as reported by DB-Library or the severity level, as
reported by the SQL server.

minorErrorMessage

Secondary message returned by database vendor library.

Syntax minorErrorMessage()

Parameters None.

Returns The string returned by this method depends on the database server:

Method of database

Implemented in LiveWire 1.0

Method of database

Implemented in LiveWire 1.0
536 JavaScript Reference

database
• Informix: “ISAM Error: string,” where string is the text of the ISAM error
code from Informix, or an empty string if there is no ISAM error.

• Oracle: the Oracle server name.

• Sybase: the operating system error text, as reported by DB-Library or the
SQL server name.

rollbackTransaction

Rolls back the current transaction.

Syntax rollbackTransaction()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description This method will undo all modifications since the last call to
beginTransaction .

For the database object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the commitTransaction or rollbackTransaction method, then the
transaction is automatically either committed or rolled back, based on the
setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection with the database
or DbPool object.

For Connection objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the commitTransaction or rollbackTransaction method,
then the transaction is automatically either committed or rolled back, based on
the commitFlag value.

Method of database

Implemented in LiveWire 1.0
Chapter 10, LiveWire Database Service 537

database
If there is no current transaction (that is, if the application has not called
beginTransaction), calls to commitTransaction and
rollbackTransaction are ignored.

The LiveWire Database Service does not support nested transactions. If you call
beginTransaction when a transaction is already open (that is, you’ve called
beginTransaction and have yet to commit or roll back that transaction),
you’ll get an error message.

SQLTable

Displays query results. Creates an HTML table for results of an SQL SELECT
statement.

Syntax SQLTable (stmt)

Parameters

Returns A string representing an HTML table, with each row and column in the query as
a row and column of the table.

Description Although SQLTable does not give explicit control over how the output is
formatted, it is the easiest way to display query results. If you want to
customize the appearance of the output, use a Cursor object to create your
own display function.

Note Every Sybase table you use with a cursor must have a unique index.

Example If connobj is a Connection object and request.sql contains an SQL query,
then the following JavaScript statements display the result of the query in a
table:

write(request.sql)
connobj.SQLTable(request.sql)

The first line simply displays the SELECT statement, and the second line
displays the results of the query. This is the first part of the HTML generated by
these statements:

Method of database

Implemented in LiveWire 1.0

stmt A string representing an SQL SELECT statement.
538 JavaScript Reference

database
select * from videos
<TABLE BORDER>
<TR>
<TH>title</TH>
<TH>id</TH>
<TH>year</TH>
<TH>category</TH>
<TH>quantity</TH>
<TH>numonhand</TH>
<TH>synopsis</TH>
</TR>
<TR>
<TD>A Clockwork Orange</TD>
<TD>1</TD>
<TD>1975</TD>
<TD>Science Fiction</TD>
<TD>5</TD>
<TD>3</TD>
<TD> Little Alex, played by Malcolm Macdowell,
and his droogies stop by the Miloko bar for a
refreshing libation before a wild night on the town.
</TD>
</TR>
<TR>
<TD>Sleepless In Seattle</TD>
...

As this example illustrates, SQLTable generates an HTML table, with column
headings for each column in the database table and a row in the table for each
row in the database table.

storedProc

Creates a stored-procedure object and runs the specified stored procedure.

Syntax storedProc (procName, inarg1, inarg2, ..., inargN)

Parameters

Method of database

Implemented in Netscape Server 3.0

procName A string specifying the name of the stored procedure to run.

inarg1, ..., inargN The input parameters to be passed to the procedure, separated
by commas.
Chapter 10, LiveWire Database Service 539

database
Returns A new Stproc object.

Description The scope of the stored-procedure object is a single page of the application. In
other words, all methods to be executed for any instance of storedProc must
be invoked on the same application page as the page on which the object is
created.

When you create a stored procedure, you can specify default values for any of
the parameters. Then, if a parameter is not included when the stored procedure
is executed, the procedure uses the default value. However, when you call a
stored procedure from a server-side JavaScript application, you must indicate
that you want to use the default value by typing "/Default/" in place of the
parameter. (Remember that JavaScript is case sensitive.) For example:

spObj = connobj.storedProc ("newhire", "/Default/", 3)

storedProcArgs

Creates a prototype for a DB2, ODBC, or Sybase stored procedure.

Syntax storedProcArgs (procName, type1, ..., typeN)

Parameters

Returns Nothing.

Description This method is only needed for DB2, ODBC, or Sybase stored procedures. If
you call it for Oracle or Informix stored procedures, it does nothing.

This method provides the procedure name and the parameters for that stored
procedure. Stored procedures can accept parameters that are only for input
("IN"), only for output ("OUT"), or for both input and output ("INOUT").

Method of database

Implemented in Netscape Server 3.0

procName The name of the procedure.

type1, ..., typeN Each typeI is one of: "IN" , "OUT" , or "INOUT" Specifies the
type of each parameter: input ("IN"), output ("OUT"), or both
input and output ("INOUT").
540 JavaScript Reference

database
You must create one prototype for each DB2, ODBC, or Sybase stored
procedure you use in your application. Additional prototypes for the same
stored procedure are ignored.

You can specify an INOUT parameter either as an INOUT or as an OUT
parameter. If you use an INOUT parameter of a stored procedure as an OUT
parameter, the LiveWire Database Service implicitly passes a NULL value for
that parameter.

Examples Assume the inoutdemo stored procedure takes one input parameter and one
input/output parameter, as follows:

create procedure inoutdemo (@inparam int, @inoutparam int output)
as
if (@inoutparam == null)
@inoutparam = @inparam + 1
else
@inoutparam = @inoutparam + 1

Assume execute the following code and then call outParameters(0) , the
result will be 101:

database.storedProcArgs("inoutdemo", "IN", "INOUT")
spobj= database.storedProc("inoutdemo", 6, 100);
answer = spobj.outParameters(0);

The value of answer is 101. On the other hand, assume you execute this code:

database.storedProcArgs("inoutdemo", "IN", "OUT")
spobj = database.storedProc("inoutdemo", 6, 100);
answer = spobj.outParameters(0);

In this case, the value of answer is 7.

toString

Returns a string representing the specified object.

Syntax toString()

Parameters None.

Method of database

Implemented in LiveWire 1.0
Chapter 10, LiveWire Database Service 541

DbPool
Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use toString within your own code to convert an object into a string,
and you can create your own function to be called in place of the default
toString method.

This method returns a string of the following format:

db "name" "userName" "dbtype" "serverName"

where

The method displays an empty string for any of attributes whose value is
unknown.

For information on defining your own toString method, see the
Object.toString method.

DbPool
Represents a pool of connections to a particular database configuration.

To connect to a database, you first create a pool of database connections and
then access individual connections as needed. For more information on the
general methodology for using DbPool objects, see Writing Server-Side
JavaScript Applications.

Created by The DbPool constructor.

name The name of the database.

userName The name of the user connected to the database.

dbType One of ORACLE, SYBASE, INFORMIX, DB2 , or ODBC.

serverName The name of the database server.

Server-side object

Implemented in Netscape Server 3.0
542 JavaScript Reference

DbPool
Description The lifetime of a DbPool object (its scope) varies. Assuming it has been
assigned to a variable, a DbPool object can go out of scope at different times:

• If the variable is a property of the project object (such as
project.engconn), then it remains in scope until the application
terminates or until you reassign the property to another value or to null.

• If it is a property of the server object (such as server.engconn), it
remains in scope until the server goes down or until you reassign the
property to another value or to null.

• In all other cases, the variable is a property of the request object. In this
situation, the variable goes out of scope when control leaves the HTML
page or you reassign the property to another value or to null.

It is your responsibility to release all connections and close all cursors, stored
procedures, and result sets associated with a DbPool object before that object
goes out of scope. Release connections and close the other objects as soon as
you are done with them.

If you do not release a connection, it remains bound and is unavailable to the
next user until the associated DbPool object goes out of scope. When you do
call release to give up a connection, the runtime engine waits until all
associated cursors, stored procedures, and result sets are closed before actually
releasing the connection. Therefore, you must close those objects when you are
done with them.

You can use the prototype property of the DbPool object to add a property to
all DbPool instances. If you do so, that addition applies to all DbPool objects
running in all applications on your server, not just in the single application that
made the change. This allows you to expand the capabilities of this object for
your entire server.

Property
Summary

Property Descriptiohn

prototype Allows the addition of properties to a DbPool object.
Chapter 10, LiveWire Database Service 543

DbPool
Method Summary

Properties

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

Method Descriptiohn

DbPool Creates a pool of database Connection objects and optionally
connects the objects to a particular configuration of database
and user.

connect Connects the pool to a particular configuration of database
and user.

connected Tests whether the database pool and all of its connections are
connected to a database.

connection Retrieves an available connection from the pool.

disconnect Disconnects all connections in the pool from the database.

majorErrorCode Major error code returned by the database server or ODBC.

majorErrorMess
age

Major error message returned by database server or ODBC.
For server errors, this typically corresponds to the server’s
SQLCODE.

minorErrorCode Secondary error code returned by database vendor library.

minorErrorMess
age

Secondary message returned by database vendor library.

storedProcArgs Creates a prototype for a Sybase stored procedure.

toString Returns a string representing the specified object.

Property of DbPool

Implemented in LiveWire 1.0
544 JavaScript Reference

DbPool
Methods

DbPool

Creates a pool of database Connection objects and optionally connects the
objects to a particular configuration of database and user.

Syntax new DbPool();

new DbPool (dbtype, serverName, username, password,
databaseName);

new DbPool (dbtype, serverName, username, password,
databaseName, maxConnections);

new DbPool (dbtype, serverName, username, password,
databaseName, maxConnections, commitflag);

Parameters

Method of DbPool

Implemented in Netscape Server 3.0

dbtype Database type. One of ORACLE, SYBASE, INFORMIX, DB2, or ODBC.
Chapter 10, LiveWire Database Service 545

DbPool
serverName Name of the database server to which to connect. The server name
typically is established when the database is installed and is different
for different database types:
DB2: Local database alias. On both NT and UNIX, this is set up by the
client or the DB2 Command Line Processor.
Informix: Informix server. On NT, this is specified with the
setnet32 utility; on UNIX, in the sqlhosts file.
Oracle: Service. On both NT and UNIX, this specified in the
tnsnames.ora file. On NT, you can use the SQL*Net easy
configuration to specify it. When your Oracle database server is local,
specify the empty string for this argument.
ODBC: Data source name. On NT, this is specified in the ODBC
Administrator; on UNIX, in the .odbc.ini file. If you are using the
Web Server as a user the file .odbc.ini must be in your home
directory; if as a system, it must be in the root directory.
Sybase: Server name (the DSQUERY parameter). On NT, this is
specified with the sqledit utility; on UNIX, with the sybinit
utility.
If in doubt, see your database or system administrator. For ODBC,
this is the name of the ODBC service as specified in Control Panel.

userName Name of the user to connect to the database. Some relational
database management systems (RDBMS) require that this be the same
as your operating system login name; others maintain their own
collections of valid user names. See your system administrator if you
are in doubt.

password User’s password. If the database does not require a password,
use an empty string ("").

databaseName Name of the database to connect to for the given serverName . If
your database server supports the notion of multiple databases on a
single server, supply the name of the database to use. If it does not,
use an empty string (""). For Oracle, ODBC, and DB2, you must
always use an empty string.
For Oracle, specify this information in the tnsnames.ora file.
For ODBC, if you want to connect to a particular database, specify
the database name specified in the datasource definition.
For DB2, there is no concept of a database name; the database name
is always the server name (as specified with serverName).
546 JavaScript Reference

DbPool
Description The first version of this constructor takes no parameters. It instantiates and
allocates memory for a DbPool object. This version of the constructor creates
and caches one connection. When this connection goes out of scope, pending
transactions are rolled back.

The second version of this constructor instantiates a DbPool object and then
calls the connect method to establish a database connection. This version of
the constructor also creates and caches one connection. When this connection
goes out of scope, pending transactions are rolled back.

The third version of this constructor instantiates a DbPool object and then calls
the connect method to establish a database connection. In addition, it attempts
to create as many connections as specified by the maxConnections parameter.
If successful, it stores those connections for later use. If the runtime engine
does not obtain the requested connections, it returns an error. When this
connection goes out of scope, pending transactions are rolled back.

maxConnections (Optional) Number of connections to be created and cached in the
pool. The runtime engine attempts to create as many connections as
specified with this parameter. If successful, it stores those connections
for later use. If you do not supply this parameter, its value is 1.
Remember that your database client license probably specifies a
maximum number of connections. Do not set this parameter to a
number higher than your license allows. For Sybase, you can have at
most 100 connections.
If your database client library is not multithreaded, it can only
support one connection at a time. In this case, your application
performs as though you specified 1 for this parameter. For a current
list of which database client libraries are multithreaded, see the
Enterprise Server 3.0 Release Notes.

commitFlag (Optional) A Boolean value indicating whether to commit a pending
transaction when the connection is released or the object is finalized.
(If the transaction is on a single page, the object is finalized at the
end of the page. If the transaction spans multiple pages, the object is
finalized when the connection returns to the pool.)
If this parameter is false, a pending transaction is rolled back. If this
parameter is true, a pending transaction if committed. For DbPool ,
the default value is false; for database , the default value is true. If
you specify this parameter, you must also specify the
maxConnections parameter.
Chapter 10, LiveWire Database Service 547

DbPool
The fourth version of this constructor does everything the third version does. In
addition, the commitflag parameter indicates what to do with pending
transactions when the connection goes out of scope. If this parameter is false
(the default), a pending transaction is rolled back. If this parameter is true, a
pending transaction if committed.

To detect errors, you can use the majorErrorCode method.

If possible, your application should call this constructor and make the database
connection on its initial page. Doing so prevents conflicts from multiple client
requests trying to manipulate the status of the connections at once.

connect
Connects the pool to a particular configuration of database and user.

Syntax connect (dbtype, serverName, username, password, databaseName)

connect (dbtype, serverName, username, password, databaseName,
maxConnections)

connect (dbtype, serverName, username, password, databaseName,
maxConnections, commitflag)

Parameters

Method of DbPool

Implemented in Netscape Server 3.0

dbtype Database type; one of ORACLE, SYBASE, INFORMIX, DB2, or ODBC.
548 JavaScript Reference

DbPool
serverName Name of the database server to which to connect. The server name
typically is established when the database is installed and is different
for different database types:
DB2: Local database alias. On both NT and UNIX, this is set up by the
client or the DB2 Command Line Processor.
Informix: Informix server. On NT, this is specified with the setnet32
utility; on UNIX, in the sqlhosts file.
Oracle: Service. On both NT and UNIX, this specified in the
tnsnames.ora file. On NT, you can use the SQL*Net easy
configuration to specify it. When your Oracle database server is local,
specify the empty string for this argument.
ODBC: Data source name. On NT, this is specified in the ODBC
Administrator; on UNIX, in the .odbc.ini file. If you are using the
Web Server as a user the file .odbc.ini must be in your home
directory; if as a system, it must be in the root directory.
Sybase: Server name (the DSQUERY parameter). On NT, this is
specified with the sqledit utility; on UNIX, with the sybinit
utility.
If in doubt, see your database or system administrator. For ODBC,
this is the name of the ODBC service as specified in Control Panel.

userName Name of the user to connect to the database. Some relational
database management systems (RDBMS) require that this be the same
as your operating system login name; others maintain their own
collections of valid user names. See your system administrator if you
are in doubt.

password User’s password. If the database does not require a password, use an
empty string ("").

databaseName Name of the database to connect to for the given serverName . If
your database server supports the notion of multiple databases on a
single server, supply the name of the database to use. If it does not,
use an empty string (""). For Oracle, ODBC, and DB2, you must
always use an empty string.
For Oracle, specify this information in the tnsnames.ora file.
For ODBC, if you want to connect to a particular database, specify
the database name specified in the datasource definition.
For DB2, there is no concept of a database name; the database name
is always the server name (as specified with serverName).
Chapter 10, LiveWire Database Service 549

DbPool
Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description When you call this method, the runtime engine first closes and releases any
currently open connections. It then reconnects the pool with the new
configuration. You should be sure that all connections have been released
before calling this method.

The first version of this method creates and caches one connection. When this
connection goes out of scope, pending transactions are rolled back.

The second version of this method attempts to create as many connections as
specified by the maxConnections parameter. If successful, it stores those
connections for later use. If the runtime engine does not obtain the requested
connections, it returns an error. When this connection goes out of scope,
pending transactions are rolled back.

maxConnections (Optional) Number of connections to be created and cached in the
pool. The runtime engine attempts to create as many connections as
specified with this parameter. If successful, it stores those connections
for later use. If you do not supply this parameter, its value is 1.
Remember that your database client license probably specifies a
maximum number of connections. Do not set this parameter to a
number higher than your license allows. For Sybase, you can have at
most 100 connections.
If your database client library is not multithreaded, it can only
support one connection at a time. In this case, your application
performs as though you specified 1 for this parameter. For a current
list of which database client libraries are multithreaded, see the
Enterprise Server 3.0 Release Notes.

commitFlag (Optional) A Boolean value indicating whether to commit a pending
transaction when the connection goes out of scope. If this parameter
is false, a pending transaction is rolled back. If this parameter is true,
a pending transaction if committed. For DbPool , the default value is
false; for database , the default value is true. If you specify this
parameter, you must also specify the maxConnections parameter.
550 JavaScript Reference

DbPool
The third version of this method does everything the second version does. In
addition, the commitflag parameter indicates what to do with pending
transactions when this connection goes out of scope. If this parameter is false
(the default), a pending transaction is rolled back. If this parameter is true, a
pending transaction if committed.

Example The following statement creates four connections to an Informix database
named mydb on a server named myserver, with user name SYSTEM and
password MANAGER. Pending transactions are rolled back at the end of a client
request:

pool.connect("INFORMIX", "myserver", "SYSTEM", "MANAGER", "mydb", 4)

connected

Tests whether the database pool and all of its connections are connected to a
database.

Syntax connected()

Parameters None.

Returns True if the pool (and hence a particular connection in the pool) is currently
connected to a database; otherwise, false.

Description The connected method indicates whether this object is currently connected to
a database.

If this method returns false for a Connection object, you cannot use any other
methods of that object. You must reconnect to the database, using the DbPool
object, and then get a new Connection object. Similarly, if this method returns
false for the database object, you must reconnect before using other methods
of that object.

Example Example 1: The following code fragment checks to see if the connection is
currently open. If it’s not, it reconnects the pool and reassigns a new value to
the myconn variable.

if (!myconn.connected()) {
mypool.connect ("INFORMIX", "myserver", "SYSTEM", "MANAGER", "mydb",

4);

Method of DbPool

Implemented in Netscape Server 3.0
Chapter 10, LiveWire Database Service 551

DbPool
myconn = mypool.connection;
}

Example 2: The following example uses an if condition to determine if an
application is connected to a database server. If the application is connected,
the isConnectedRoutine function runs; if the application is not connected,
the isNotConnected routine runs.

if(database.connected()) {
isConnectedRoutine() }

else {
isNotConnectedRoutine() }

connection

Retrieves an available connection from the pool.

Syntax connection (name, timeout)

Parameters

Returns A new Connection object.

disconnect

Disconnects all connections in the pool from the database.

Syntax disconnect()

Parameters None.

Method of DbPool

Implemented in Netscape Server 3.0

name An arbitrary name for the connection. Primarily used for debugging.

timeout The number of seconds to wait for an available connection before
returning. The default is to wait indefinitely. If you specify this
parameter, you must also specify the name parameter.

Method of DbPool

Implemented in Netscape Server 3.0
552 JavaScript Reference

DbPool
Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description For the DbPool object, before calling the disconnect method, you must first
call the release method for all connections in this database pool. Otherwise,
the connection is still considered in use by the system, so the disconnect waits
until all connections are released.

After disconnecting from a database, the only methods of this object you can
use are connect and connected .

Examples The following example uses an if condition to determine if an application is
connected to a database server. If the application is connected, the application
calls the disconnect method; if the application is not connected, the
isNotConnected routine runs.

if(database.connected()) {
database.disconnect() }

else {
isNotConnectedRoutine() }

majorErrorCode

Major error code returned by the database server or ODBC.

Syntax majorErrorCode()

Parameters None.

Returns The result returned by this method depends on the database server being used:

• Informix: the Informix error code.

• Oracle: the code as reported by Oracle Call-level Interface (OCI).

• Sybase: the DB-Library error number or the SQL server message number.

Description SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multiuser
database, and so on. When an action fails, the database server returns an error

Method of DbPool

Implemented in Netscape Server 3.0
Chapter 10, LiveWire Database Service 553

DbPool
message indicating the reason for failure. The LiveWire™ Database Service
provides two ways of getting error information: from the status code returned
by various methods or from special properties containing error messages and
codes.

Status codes are integers between 0 and 27, with 0 indicating a successful
execution of the statement and other numbers indicating an error, as shown in
Table 10.3.

Table 10.3 Database status codes.

Status
Code

Explanation Status
Code

Explanation

0 No error 14 Null reference parameter

1 Out of memory 15 Connection object not
found

2 Object never initialized 16 Required information is
missing

3 Type conversion error 17 Object cannot support
multiple readers

4 Database not registered 18 Object cannot support
deletions

5 Error reported by server 19 Object cannot support
insertions

6 Message from server 20 Object cannot support
updates

7 Error from vendor’s library 21 Object cannot support
updates

8 Lost connection 22 Object cannot support
indices

9 End of fetch 23 Object cannot be dropped

10 Invalid use of object 24 Incorrect connection
supplied

11 Column does not exist 25 Object cannot support
privileges

12 Invalid positioning within
object (bounds error)

26 Object cannot support
cursors

13 Unsupported feature 27 Unable to open
554 JavaScript Reference

DbPool
Examples This example updates the rentals table within a transaction. The updateRow
method assigns a database status code to the statusCode variable to indicate
whether the method is successful.

If updateRow succeeds, the value of statusCode is 0, and the transaction is
committed. If updateRow returns a statusCode value of either five or seven,
the values of majorErrorCode , majorErrorMessage , minorErrorCode , and
minorErrorMessage are displayed. If statusCode is set to any other value,
the errorRoutine function is called.

database.beginTransaction()
statusCode = cursor.updateRow("rentals")

if (statusCode == 0) {
database.commitTransaction()
}

if (statusCode == 5 || statusCode == 7) {
write("The operation failed to complete.
"
write("Contact your system administrator with the following:<P>"
write("The value of statusCode is " + statusCode + "
")
write("The value of majorErrorCode is " +

database.majorErrorCode() + "
")
write("The value of majorErrorMessage is " +

database.majorErrorMessage() + "
")
write("The value of minorErrorCode is " +

database.minorErrorCode() + "
")
write("The value of minorErrorMessage is " +

database.minorErrorMessage() + "
")
database.rollbackTransaction()
}

else {
errorRoutine()
}

majorErrorMessage

Major error message returned by database server or ODBC. For server errors,
this typically corresponds to the server’s SQLCODE.

Syntax majorErrorMessage()

Parameters None.

Method of DbPool

Implemented in Netscape Server 3.0
Chapter 10, LiveWire Database Service 555

DbPool
Returns A string describing that depends on the database server:

• Informix: “Vendor Library Error: string,” where string is the error text from
Informix.

• Oracle: “Server Error: string,” where string is the translation of the return
code supplied by Oracle.

• Sybase: “Vendor Library Error: string,” where string is the error text from
DB-Library or “Server Error string,” where string is text from the SQL server,
unless the severity and message number are both 0, in which case it returns
just the message text.

Description SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multiuser
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire Database Service
provides two ways of getting error information: from the status code returned
by connection and DbPool methods or from special connection or DbPool
properties containing error messages and codes.

Examples See DbPool.majorErrorCode .

minorErrorCode

Secondary error code returned by database vendor library.

Syntax minorErrorCode()

Parameters None.

Returns The result returned by this method depends on the database server:

• Informix: the ISAM error code, or 0 if there is no ISAM error.

• Oracle: the operating system error code as reported by OCI.

• Sybase: the severity level, as reported by DB-Library or the severity level, as
reported by the SQL server.

Method of DbPool

Implemented in Netscape Server 3.0
556 JavaScript Reference

DbPool
minorErrorMessage

Secondary message returned by database vendor library.

Syntax minorErrorMessage()

Parameters None.

Returns The string returned by this method depends on the database server:

• Informix: “ISAM Error: string,” where string is the text of the ISAM error
code from Informix, or an empty string if there is no ISAM error.

• Oracle: the Oracle server name.

• Sybase: the operating system error text, as reported by DB-Library or the
SQL server name.

storedProcArgs

Creates a prototype for a DB2, ODBC, or Sybase stored procedure.

Syntax storedProcArgs (procName, type1, ..., typeN)

Parameters

Returns Nothing.

Description This method is only for Sybase stored procedures.

Method of DbPool

Implemented in Netscape Server 3.0

Method of DbPool

Implemented in Netscape Server 3.0

procName The name of the procedure.

type1, ..., typeN Each typeI is one of: "IN" , "OUT" , or "INOUT" Specifies the
type of each parameter: input ("IN"), output ("OUT"), or both
input and output ("INOUT").
Chapter 10, LiveWire Database Service 557

DbPool
This method provides the procedure name and the parameters for that stored
procedure. Sybase stored procedures can accept parameters that are only for
input ("IN "), only for output ("OUT"), or for both input and output ("INOUT").

You must create one prototype for each Sybase stored procedure you use in
your application. Additional prototypes for the same stored procedure are
ignored.

You can specify an INOUT parameter either as an INOUT or as an OUT
parameter. If you use an INOUT parameter of a stored procedure as an OUT
parameter, the LiveWire Database Service implicitly passes a NULL value for that
parameter.

Examples Assume the inoutdemo stored procedure takes one input parameter and one
input/output parameter, as follows:

create procedure inoutdemo (@inparam int, @inoutparam int output)
as
if (@inoutparam == null)
@inoutparam = @inparam + 1
else
@inoutparam = @inoutparam + 1

Assume execute the following code and then call outParameters(0) , the
result will be 101:

database.storedProcArgs("inoutdemo", "IN", "INOUT")
spobj= database.storedProc("inoutdemo", 6, 100);
answer = spobj.outParameters(0);

The value of answer is 101. On the other hand, assume you execute this code:

database.storedProcArgs("inoutdemo", "IN", "OUT")
spobj = database.storedProc("inoutdemo", 6, 100);
answer = spobj.outParameters(0);

In this case, the value of answer is 7.

toString

Returns a string representing the specified object.

Syntax toString()

Method of DbPool

Implemented in Netscape Server 3.0
558 JavaScript Reference

DbPool
Parameters None.

Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use toString within your own code to convert an object into a string,
and you can create your own function to be called in place of the default
toString method.

This method returns a string of the following format:

db "name" "userName" "dbtype" "serverName"

where

The method displays an empty string for any of attributes whose value is
unknown.

For information on defining your own toString method, see the
Object.toString method.

name The name of the database.

userName The name of the user connected to the database.

dbType One of ORACLE, SYBASE, INFORMIX, DB2 , or ODBC.

serverName The name of the database server.
Chapter 10, LiveWire Database Service 559

Connection
Connection
Represents a single database connection from a pool of connections.

Created by The DbPool.connection method. You do not call a connection constructor
directly. Once you have a Connection object, you use it for your interactions
with the database.

Description You can use the prototype property of the Connection class to add a
property to all Connection instances. If you do so, that addition applies to all
Connection objects running in all applications on your server, not just in the
single application that made the change. This allows you to expand the
capabilities of this object for your entire server.

Property
Summary

Method Summary

Server-side object

Implemented in Netscape Server 3.0

Property Descriptiohn

prototype Allows the addition of properties to a Connection object.

Method Descriptiohn

beginTransaction Begins a new SQL transaction.

commitTransaction Commits the current transaction.

connected Tests whether the database pool (and hence this
connection) is connected to a database.

cursor Creates a database cursor for the specified SQL SELECT
statement.

execute Performs the specified SQL statement. Use for SQL
statements other than queries.

majorErrorCode Major error code returned by the database server or
ODBC.

majorErrorMessage Major error message returned by database server or
ODBC.
560 JavaScript Reference

Connection
Properties

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

Methods

beginTransaction

Begins a new SQL transaction.

Syntax beginTransaction()

minorErrorCode Secondary error code returned by database vendor
library.

minorErrorMessage Secondary message returned by database vendor library.

release Releases the connection back to the database pool.

rollbackTransacti
on

Rolls back the current transaction.

SQLTable Displays query results. Creates an HTML table for results
of an SQL SELECT statement.

storedProc Creates a stored-procedure object and runs the specified
stored procedure.

toString Returns a string representing the specified object.

Property of Connection

Implemented in LiveWire 1.0

Method of Connection

Implemented in Netscape Server 3.0

Method Descriptiohn
Chapter 10, LiveWire Database Service 561

Connection
Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description All subsequent actions that modify the database are grouped with this
transaction, known as the current transaction.

For the database object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the commitTransaction or rollbackTransaction method, then the
transaction is automatically either committed or rolled back, based on the
setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection by calling
database.connect .

For Connection objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the commitTransaction or rollbackTransaction method,
then the transaction is automatically either committed or rolled back, based on
the setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection by calling the
connect method or in the DbPool constructor.

If there is no current transaction (that is, if the application has not called
beginTransaction), calls to commitTransaction and
rollbackTransaction are ignored.

The LiveWire Database Service does not support nested transactions. If you call
beginTransaction when a transaction is already open (that is, you’ve called
beginTransaction and have yet to commit or roll back that transaction),
you’ll get an error message.

Examples This example updates the rentals table within a transaction. The values of
customerID and videoID are passed into the cursor method as properties of
the request object. When the videoReturn Cursor object opens, the next
method navigates to the only record in the answer set and updates the value in
the returnDate field.

The variable x is assigned a database status code to indicate if the updateRow
method is successful. If updateRow succeeds, the value of x is 0, and the
transaction is committed; otherwise, the transaction is rolled back.
562 JavaScript Reference

Connection
// Begin a transaction
database.beginTransaction();

// Create a Date object with the value of today's date
today = new Date();

// Create a Cursor with the rented video in the answer set
videoReturn = database.Cursor("SELECT * FROM rentals WHERE

customerId = " + request.customerID + " AND
videoId = " + request.videoID, true);

// Position the pointer on the first row of the Cursor
// and update the row
videoReturn.next()
videoReturn.returndate = today;
x = videoReturn.updateRow("rentals");

// End the transaction by committing or rolling back
if (x == 0) {

database.commitTransaction() }
else {

database.rollbackTransaction() }

// Close the Cursor
videoReturn.close();

commitTransaction

Commits the current transaction

Syntax commitTransaction()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description This method attempts to commit all actions since the last call to
beginTransaction .

For the database object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the commitTransaction or rollbackTransaction method, then the

Method of Connection

Implemented in Netscape Server 3.0
Chapter 10, LiveWire Database Service 563

Connection
transaction is automatically either committed or rolled back, based on the
setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection with the database
or DbPool object.

For Connection objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the commitTransaction or rollbackTransaction method,
then the transaction is automatically either committed or rolled back, based on
the commitFlag value.

If there is no current transaction (that is, if the application has not called
beginTransaction), calls to commitTransaction and
rollbackTransaction are ignored.

The LiveWire Database Service does not support nested transactions. If you call
beginTransaction when a transaction is already open (that is, you’ve called
beginTransaction and have yet to commit or roll back that transaction),
you’ll get an error message.

connected

Tests whether the database pool and all of its connections are connected to a
database.

Syntax connected()

Parameters None.

Returns True if the pool (and hence a particular connection in the pool) is currently
connected to a database; otherwise, false.

Description The connected method indicates whether this object is currently connected to
a database.

If this method returns false for a Connection object, you cannot use any other
methods of that object. You must reconnect to the database, using the DbPool
object, and then get a new Connection object. Similarly, if this method returns
false for the database object, you must reconnect before using other methods
of that object.

Method of Connection

Implemented in Netscape Server 3.0
564 JavaScript Reference

Connection
Example Example 1: The following code fragment checks to see if the connection is
currently open. If it’s not, it reconnects the pool and reassigns a new value to
the myconn variable.

if (!myconn.connected()) {
mypool.connect ("INFORMIX", "myserver", "SYSTEM", "MANAGER", "mydb",

4);
myconn = mypool.connection;

}

Example 2: The following example uses an if condition to determine if an
application is connected to a database server. If the application is connected,
the isConnectedRoutine function runs; if the application is not connected,
the isNotConnected routine runs.

if(database.connected()) {
isConnectedRoutine() }

else {
isNotConnectedRoutine() }

cursor

Creates a Cursor object.

Syntax cursor("sqlStatement",updatable)

Parameters

Returns A new Cursor object.

Description The cursor method creates a Cursor object that contains the rows returned by
a SQL SELECT statement. The SELECT statement is passed to the cursor
method as the sqlStatement argument. If the SELECT statement does not
return any rows, the resulting Cursor object has no rows. The first time you
use the next method on the object, it returns false.

Method of Connection

Implemented in Netscape Server 3.0

sqlStatement A JavaScript string representing a SQL SELECT statement supported
by the database server.

updatable (Optional) A Boolean parameter indicating whether or not the
cursor is updatable.
Chapter 10, LiveWire Database Service 565

Connection
You can perform the following tasks with the Cursor object:
• Modify data in a server table.
• Navigate in a server table.
• Customize the display of the virtual table returned by a database query.
• Run stored procedures.

The cursor method does not automatically display the returned data. To
display this data, you must create custom HTML code. This HTML code may
display the rows in an HTML table, as shown in Example 3. The SQLTable
method is an easier way to display the output of a database query, but you
cannot navigate, modify data, or control the format of the output.

The optional parameter updatable specifies whether you can modify the
Cursor object you create with the cursor method. To create a Cursor object
you can modify, specify updatable as true. If you do not specify a value for
the updatable parameter, it is false by default.

If you create an updatable Cursor object, the answer set returned by the
sqlStatement parameter must be updatable. For example, the SELECT
statement in the sqlStatement parameter cannot contain a GROUP BY clause;
in addition, the query usually must retrieve key values from a table. For more
information on constructing updatable queries, consult your database vendor’s
documentation.

Examples Example 1. The following example creates the updatable cursor custs and
returns the columns ID , CUST_NAME, and CITY from the customer table:

custs = database.Cursor("select id, cust_name, city from customer",
true)

Example 2. You can construct the SELECT statement with the string
concatenation operator (+) and string variables such as client or request
property values, as shown in the following example:

custs = database.Cursor("select * from customer
where customerID = " + request.customerID);

Example 3. The following example demonstrates how to format the answer set
returned by the cursor method as an HTML table. This example first creates
Cursor object named videoSet and then displays two columns of its data
(videoSet.title and videoSet.synopsis).

// Create the videoSet Cursor
<SERVER>
videoSet = database.cursor("select * from videos
566 JavaScript Reference

Connection
where videos.numonhand > 0 order by title");
</SERVER>

// Begin creating an HTML table to contain the answer set
// Specify titles for the two columns in the answer set
<TABLE BORDER>
<CAPTION> Videos on Hand </CAPTION>
<TR>

<TH>Title</TH>
<TH>Synopsis</TH>

</TR>

// Use a while loop to iterate over each row in the cursor
<SERVER>
while(videoSet.next()) {
</SERVER>

// Use write statements to display the data in both columns
<TR>

<TH>
 <SERVER>write(videoSet.title)</SERVER></TH>

<TD><SERVER>write(videoSet.synopsis)</SERVER></TD>
</TR>

// End the while loop
<SERVER>
}
</SERVER>

// End the HTML table
</TABLE>

The values in the videoSet.title column are displayed within the A tag so a
user can click them as links. When a user clicks a title, the rent.html page
opens and the column value videoSet.id is passed to it as the value of
request.videoID .

See also Connection.SQLTable , Connection.cursor

execute

Performs the specified SQL statement. Use for SQL statements other than
queries.

Syntax execute (stmt)

Method of Connection

Implemented in Netscape Server 3.0
Chapter 10, LiveWire Database Service 567

Connection
Parameters

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description This method enables an application to execute any data definition language
(DDL) or data manipulation language (DML) SQL statement supported by the
database server that does not return a Cursor, such as CREATE, ALTER, or DROP.

Each database supports a standard core of DDL and DML statements. In
addition, they may each also support DDL and DML statements specific to that
database vendor. You can use execute to call any of those statements.
However, each database vendor may also provide functions you can use with
the database that are not DDL or DML statements. You cannot use execute to
call those functions. For example, you cannot call the Oracle describe
function or the Informix load function from the execute method.

Although technically you can use execute to perform data modification
(INSERT, UPDATE, and DELETE statements), you should instead use Cursor
objects. This makes your application more database-independent. Cursors also
provide support for binary large object (BLOb) data.

When using the execute method, your SQL statement must strictly conform to
the syntax requirements of the database server. For example, some servers
require each SQL statement to be terminated by a semicolon. See your server
documentation for more information.

If you have not explicitly started a transaction, the single statement is
automatically committed.

Examples In the following example, the execute method is used to delete a customer
from the customer table. customer.ID represents the unique ID of a customer
that is in the ID column of the customer table. The value for customer.ID is
passed into the DELETE statement as the value of the ID property of the
request object.

if(request.ID != null) {
database.execute("delete from customer

where customer.ID = " + request.ID)
}

stmt A string representing the SQL statement to execute.
568 JavaScript Reference

Connection
majorErrorCode

Major error code returned by the database server or ODBC.

Syntax majorErrorCode()

Parameters None.

Returns The result returned by this method depends on the database server being used:

• Informix: the Informix error code.

• Oracle: the code as reported by Oracle Call-level Interface (OCI).

• Sybase: the DB-Library error number or the SQL server message number.

Description SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multiuser
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire™ Database Service
provides two ways of getting error information: from the status code returned
by various methods or from special properties containing error messages and
codes.

Status codes are integers between 0 and 27, with 0 indicating a successful
execution of the statement and other numbers indicating an error, as shown in
Table 10.4.

Method of Connection

Implemented in Netscape Server 3.0

Table 10.4 Database status codes.

Status
Code

Explanation Status
Code

Explanation

0 No error 14 Null reference parameter

1 Out of memory 15 Connection object not found

2 Object never initialized 16 Required information is missing

3 Type conversion error 17 Object cannot support multiple
readers

4 Database not registered 18 Object cannot support deletions
Chapter 10, LiveWire Database Service 569

Connection
Examples This example updates the rentals table within a transaction. The updateRow
method assigns a database status code to the statusCode variable to indicate
whether the method is successful.

If updateRow succeeds, the value of statusCode is 0, and the transaction is
committed. If updateRow returns a statusCode value of either five or seven,
the values of majorErrorCode , majorErrorMessage , minorErrorCode , and
minorErrorMessage are displayed. If statusCode is set to any other value,
the errorRoutine function is called.

database.beginTransaction()
statusCode = cursor.updateRow("rentals")

if (statusCode == 0) {
database.commitTransaction()
}

if (statusCode == 5 || statusCode == 7) {
write("The operation failed to complete.
"
write("Contact your system administrator with the following:<P>"
write("The value of statusCode is " + statusCode + "
")
write("The value of majorErrorCode is " +

database.majorErrorCode() + "
")
write("The value of majorErrorMessage is " +

database.majorErrorMessage() + "
")
write("The value of minorErrorCode is " +

database.minorErrorCode() + "
")

5 Error reported by server 19 Object cannot support insertions

6 Message from server 20 Object cannot support updates

7 Error from vendor’s library 21 Object cannot support updates

8 Lost connection 22 Object cannot support indices

9 End of fetch 23 Object cannot be dropped

10 Invalid use of object 24 Incorrect connection supplied

11 Column does not exist 25 Object cannot support privileges

12 Invalid positioning within
object (bounds error)

26 Object cannot support cursors

13 Unsupported feature 27 Unable to open

Table 10.4 Database status codes.

Status
Code

Explanation Status
Code

Explanation
570 JavaScript Reference

Connection
write("The value of minorErrorMessage is " +
database.minorErrorMessage() + "
")

database.rollbackTransaction()
}

else {
errorRoutine()
}

majorErrorMessage

Major error message returned by database server or ODBC. For server errors,
this typically corresponds to the server’s SQLCODE.

Syntax majorErrorMessage()

Parameters None.

Returns A string describing that depends on the database server:

• Informix: “Vendor Library Error: string,” where string is the error text from
Informix.

• Oracle: “Server Error: string,” where string is the translation of the return
code supplied by Oracle.

• Sybase: “Vendor Library Error: string,” where string is the error text from
DB-Library or “Server Error string,” where string is text from the SQL server,
unless the severity and message number are both 0, in which case it returns
just the message text.

Description SQL statements can fail for a variety of reasons, including referential integrity
constraints, lack of user privileges, record or table locking in a multiuser
database, and so on. When an action fails, the database server returns an error
message indicating the reason for failure. The LiveWire Database Service
provides two ways of getting error information: from the status code returned
by connection and DbPool methods or from special connection or DbPool
properties containing error messages and codes.

Examples See Connection.majorErrorCode .

Method of Connection

Implemented in Netscape Server 3.0
Chapter 10, LiveWire Database Service 571

Connection
minorErrorCode

Secondary error code returned by database vendor library.

Syntax minorErrorCode()

Parameters None.

Returns The result returned by this method depends on the database server:

• Informix: the ISAM error code, or 0 if there is no ISAM error.

• Oracle: the operating system error code as reported by OCI.

• Sybase: the severity level, as reported by DB-Library or the severity level, as
reported by the SQL server.

minorErrorMessage

Secondary message returned by database vendor library.

Syntax minorErrorMessage()

Parameters None.

Returns The string returned by this method depends on the database server:

• Informix: “ISAM Error: string,” where string is the text of the ISAM error
code from Informix, or an empty string if there is no ISAM error.

• Oracle: the Oracle server name.

• Sybase: the operating system error text, as reported by DB-Library or the
SQL server name.

Method of Connection

Implemented in Netscape Server 3.0

Method of Connection

Implemented in Netscape Server 3.0
572 JavaScript Reference

Connection
release

Releases the connection back to the database pool.

Syntax release()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description Before calling the release method, you should close all open cursors. When
you call the release method, the runtime engine waits until all cursors have
been closed and then returns the connection to the database pool. The
connection is then available to the next user.

If you don't call the release method, the connection remains unavailable until
the object goes out of scope. Assuming the object has been assigned to a
variable, it can go out of scope at different times:

• If the variable is a property of the project object (such as
project.engconn), then it remains in scope until the application
terminates.

• If it is a property of the server object (such as server.engconn), it does
not go out of scope until the server goes down. You rarely want to have a
connection last the lifetime of the server.

• In all other cases, the variable is a property of the client request. In this
situation, the variable goes out of scope when the JavaScript finalize
method is called; that is, when control leaves the HTML page.

You must call the release method for all connections in a database pool
before you can call the DbPool object’s disconnect method. Otherwise, the
connection is still considered in use by the runtime engine, so the disconnect
waits until all connections are released.

Method of Connection

Implemented in Netscape Server 3.0
Chapter 10, LiveWire Database Service 573

Connection
rollbackTransaction

Rolls back the current transaction.

Syntax rollbackTransaction()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description This method will undo all modifications since the last call to
beginTransaction .

For the database object, the scope of a transaction is limited to the current
request (HTML page) in the application. If the application exits the page before
calling the commitTransaction or rollbackTransaction method, then the
transaction is automatically either committed or rolled back, based on the
setting of the commitflag parameter when the connection was established.
This parameter is provided when you make the connection with the database
or DbPool object.

For Connection objects, the scope of a transaction is limited to the lifetime of
that object. If the connection is released or the pool of connections is closed
before calling the commitTransaction or rollbackTransaction method,
then the transaction is automatically either committed or rolled back, based on
the commitFlag value.

If there is no current transaction (that is, if the application has not called
beginTransaction), calls to commitTransaction and
rollbackTransaction are ignored.

The LiveWire Database Service does not support nested transactions. If you call
beginTransaction when a transaction is already open (that is, you’ve called
beginTransaction and have yet to commit or roll back that transaction),
you’ll get an error message.

Method of Connection

Implemented in Netscape Server 3.0
574 JavaScript Reference

Connection
SQLTable

Displays query results. Creates an HTML table for results of an SQL SELECT
statement.

Syntax SQLTable (stmt)

Parameters

Returns A string representing an HTML table, with each row and column in the query as
a row and column of the table.

Description Although SQLTable does not give explicit control over how the output is
formatted, it is the easiest way to display query results. If you want to
customize the appearance of the output, use a Cursor object to create your
own display function.

Note Every Sybase table you use with a cursor must have a unique index.

Example If connobj is a Connection object and request.sql contains an SQL query,
then the following JavaScript statements display the result of the query in a
table:

write(request.sql)
connobj.SQLTable(request.sql)

The first line simply displays the SELECT statement, and the second line
displays the results of the query. This is the first part of the HTML generated by
these statements:

select * from videos
<TABLE BORDER>
<TR>
<TH>title</TH>
<TH>id</TH>
<TH>year</TH>
<TH>category</TH>
<TH>quantity</TH>
<TH>numonhand</TH>
<TH>synopsis</TH>
</TR>

Method of Connection

Implemented in Netscape Server 3.0

stmt A string representing an SQL SELECT statement.
Chapter 10, LiveWire Database Service 575

Connection
<TR>
<TD>A Clockwork Orange</TD>
<TD>1</TD>
<TD>1975</TD>
<TD>Science Fiction</TD>
<TD>5</TD>
<TD>3</TD>
<TD> Little Alex, played by Malcolm Macdowell,
and his droogies stop by the Miloko bar for a
refreshing libation before a wild night on the town.
</TD>
</TR>
<TR>
<TD>Sleepless In Seattle</TD>
...

As this example illustrates, SQLTable generates an HTML table, with column
headings for each column in the database table and a row in the table for each
row in the database table.

storedProc

Creates a stored-procedure object and runs the specified stored procedure.

Syntax storedwProc (procName, inarg1, inarg2, ..., inargN)

Parameters

Returns A new Stproc object.

Description The scope of the stored-procedure object is a single page of the application. In
other words, all methods to be executed for any instance of storedProc must
be invoked on the same application page as the page on which the object is
created.

Method of Connection

Implemented in Netscape Server 3.0

procName A string specifying the name of the stored procedure to run.

inarg1, ..., inargN The input parameters to be passed to the procedure, separated
by commas.
576 JavaScript Reference

Connection
When you create a stored procedure, you can specify default values for any of
the parameters. Then, if a parameter is not included when the stored procedure
is executed, the procedure uses the default value. However, when you call a
stored procedure from a server-side JavaScript application, you must indicate
that you want to use the default value by typing "/Default/" in place of the
parameter. (Remember that JavaScript is case sensitive.) For example:

spObj = connobj.storedProc ("newhire", "/Default/", 3)

toString

Returns a string representing the specified object.

Syntax toString()

Parameters None.

Description Every object has a toString method that is automatically called when it is to
be represented as a text value or when an object is referred to in a string
concatenation.

You can use toString within your own code to convert an object into a string,
and you can create your own function to be called in place of the default
toString method.

This method returns a string of the following format:

db "name" "userName" "dbtype" "serverName"

where

The method displays an empty string for any of attributes whose value is
unknown.

Method of Connection

Implemented in Netscape Server 3.0

name The name of the database.

userName The name of the user connected to the database.

dbType One of ORACLE, SYBASE, INFORMIX, DB2 , or ODBC.

serverName The name of the database server.
Chapter 10, LiveWire Database Service 577

Cursor
For information on defining your own toString method, see the
Object.toString method.

Cursor
Server-side object. A Cursor object represents a database cursor for a specified
SQL SELECT statement.

Created by The cursor method of a Connection object or of the database object. You
do not call a Cursor constructor.

Description A database query is said to return a Cursor . You can think of a Cursor as a
virtual table, with rows and columns specified by the query. A cursor also has a
notion of a current row, which is essentially a pointer to a row in the virtual
table. When you perform operations with a Cursor, they usually affect the
current row.

You can perform the following tasks with the Cursor object:

• Modify data in a database table.

• Navigate in a database table.

• Customize the display of the virtual table returned by a database query.

You can use a Cursor object to customize the display of the virtual table by
specifying which columns and rows to display and how to display them. The
Cursor object does not automatically display the data returned in the virtual
table. To display this data, you must create HTML code such as that shown in
Example 4 for the cursor method.

A pointer indicates the current row in a Cursor. When you create a Cursor, the
pointer is initially positioned before the first row of the cursor. The next
method makes the following row in the cursor the current row. If the SELECT
statement used in the call to the cursor method does not return any rows, the
method still creates a Cursor object. However, since that object has no rows,
the first time you use the next method on the object, it returns false. Your
application should check for this condition.

Server-side object

Implemented in LiveWire 1.0
578 JavaScript Reference

Cursor
Important A database cursor does not guarantee the order or positioning of its rows. For
example, if you have an updatable cursor and add a row to the cursor, you
have no way of knowing where that row appears in the cursor.

When finished with a Cursor object, use the close method to close it and
release the memory it uses. If you release a connection that has an open cursor,
the runtime engine waits until the cursor is closed before actually releasing the
connection.

If you do not explicitly close a cursor with the close method, the JavaScript
runtime engine on the server automatically tries to close all open cursors when
the associated database or DbPool object goes out of scope. This can tie up
system resources unnecessarily. It can also lead to unpredictable results.

You can use the prototype property of the Cursor class to add a property to
all Cursor instances. If you do so, that addition applies to all Cursor instances
running in all applications on your server, not just in the single application that
made the change. This allows you to expand the capabilities of this object for
your entire server.

Note Every Sybase table you use with a cursor must have a unique index.

Property
Summary

Method Summary

Property Descriptiohn

cursorColumn An array of objects corresponding to the columns in a cursor.

prototype Allows the addition of properties to a Cursor object.

Method Descriptiohn

close Closes the cursor and frees the allocated memory.

columnName the name of the column in the cursor corresponding to the
specified number.

columns Returns the number of columns in the cursor.

deleteRow Deletes the current row in the specified table.

insertRow Inserts a new row in the specified table.
Chapter 10, LiveWire Database Service 579

Cursor
Properties

This section describes the properties of cursor objects.

The properties of cursor objects vary from instance to instance. Each Cursor

object has a property for each named column in the cursor. In other words,
when you create a cursor, it acquires a property for each column in the virtual
table, as determined by the SELECT statement.

Note Unlike other properties in JavaScript, cursor properties corresponding to
column names are not case sensitive, because SQL is not case sensitive and
some databases are not case sensitive.

You can also refer to properties of a Cursor object as elements of an array.
The 0-index array element corresponds to the first column, the 1-index array
element corresponds to the second column, and so on.

SELECT statements can retrieve values that are not columns in the database,
such as aggregate values and SQL expressions. You can display these values by
using the cursor’s property array index for the value.

cursorColumn

An array of objects corresponding to the columns in a cursor.

Examples Example 1: Using column titles as cursor properties. The following
example creates the customerSet Cursor object containing the id , name, and
city rows from the customer table. The next method moves the pointer to
the first row of the cursor. The id , name, and city columns become the

next Moves the current row to the next row in the cursor.

updateRow Updates records in the current row of the specified table in
the cursor.

Method Descriptiohn

Property of Cursor

Implemented in LiveWire 1.0
580 JavaScript Reference

Cursor
cursor properties customer.id , customerSet.name , and
customerSet.city . Because the pointer is in the first row of the cursor, the
write method displays the values of these properties for the first row.

// Create a Cursor object
customerSet = database.cursor("SELECT id, name, city FROM customer")

// Navigate to the first row
customerSet.next()

write(customerSet.id + "
")
write(customerSet.name + "
")
write(customerSet.city + "
")

// Close the cursor
customerSet.close()

This query might return a virtual table containing the following rows:

1 John Smith Anytown
2 Fred Flintstone Bedrock
3 George Jetson Spacely

Example 2: Iterating with the cursor properties. In this example, the
cursor property array is used in a for statement to iterate over each column in
the customerSet cursor.

// Create a Cursor object
customerSet = database.cursor("SELECT id, name, city FROM customer")

// Navigate to the first row
customerSet.next()

// Start a for loop
for (var i = 0; i < customerSet.columns(); i++) {
write(customerSet[i] + "
") }

// Close the cursor
customerSet.close()

Because the next statement moves the pointer to the first row, the preceding
code displays values similar to the following:

1
John Smith
Anytown

Example 3. Using the cursor properties with an aggregate expression. In
this example, the salarySet cursor contains a column created by the
aggregate function MAX.

salarySet = database.cursor("SELECT name, MAX(salary) FROM employee")
Chapter 10, LiveWire Database Service 581

Cursor
Because the aggregate column does not have a name, you must use the refer to
it by its index number, as follows:

write(salarySet[1])

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

Methods

close

Closes the cursor and frees the allocated memory.

Syntax close()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description The close method closes a cursor or result set and releases the memory it uses.
If you do not explicitly close a cursor or result set with the close method, the
JavaScript runtime engine on the server automatically closes all open cursors
and result sets when the corresponding client object goes out of scope.

Examples The following example creates the rentalSet cursor, performs certain
operations on it, and then closes it with the close method.

Property of Cursor

Implemented in LiveWire 1.0

Method of Cursor

Implemented in LiveWire 1.0
582 JavaScript Reference

Cursor
// Create a Cursor object
rentalSet = database.cursor("SELECT * FROM rentals")

// Perform operations on the cursor
cursorOperations()

//Close the cursor
err = rentalSet.close()

columnName

Returns the name of the column in the cursor corresponding to the specified
number.

Syntax columnName (n)

Parameters

Returns The name of the column.

The result sets for Informix and DB2 stored procedures do not have named
columns. Do not use this method when connecting to those databases. In those
cases you should always refer to the result set columns by the index number.

If your SELECT statement uses a wildcard (*) to select all the columns in a table,
the columnName method does not guarantee the order in which it assigns
numbers to the columns. That is, suppose you have this statement:

custs = connobj.cursor ("select * from customer");

If the customer table has 3 columns, ID, NAME, and CITY, you cannot tell
ahead of time which of these columns corresponds to custs.columnName(0) .
(Of course, you are guaranteed that successive calls to columnName have the
same result.) If the order matters to you, you can instead hard-code the column
names in the select statement, as in the following statement:

custs = connobj.cursor ("select ID, NAME, CITY from customer");

With this statement, custs.columnName(0) is ID, custs.columnName(1) is
NAME, and custs.columnName(2) is CITY.

Method of Cursor

Implemented in LiveWire 1.0

n Zero-based integer corresponding to the column in the query. The first
column in the result set is 0, the second is 1, and so on.
Chapter 10, LiveWire Database Service 583

Cursor
Examples The following example assigns the name of the first column in the
customerSet cursor to the variable header :

customerSet=database.cursor(SELECT * FROM customer ORDER BY name)
header = customerSet.columnName(0)

columns

Returns the number of columns in the cursor.

Syntax columns()

Parameters None.

Returns The number of named and unnamed columns.

Examples See Example 2 of Cursor for an example of using the columns method with
the cursorColumn array.

The following example returns the number of columns in the custs cursor:

custs.columns()

deleteRow

Deletes the current row in the specified table.

Syntax deleteRow (table)

Parameters

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Method of Cursor

Implemented in LiveWire 1.0

Method of Cursor

Implemented in LiveWire 1.0

table A string specifying the name of the table from which to delete a row.
584 JavaScript Reference

Cursor
Description The deleteRow method uses an updatable cursor to delete the current row
from the specified table. See Cursor for information about creating an
updatable cursor.

Examples In the following example, the deleteRow method removes a customer from the
customer database. The cursor method creates the customerSet cursor
containing a single row; the value for customer.ID is passed in as a request
object property. The next method moves the pointer to the only row in the
cursor, and the deleteRow method deletes the row.

database.beginTransaction()
customerSet = database.cursor("select * from customer where

customer.ID = " + request.ID, true)
customerSet.next()
statusCode = customerSet.deleteRow("customer")
customerSet.close()
if (statusCode == 0) {

database.commitTransaction() }
else {

database.rollbackTransaction() }

In this example, the deleteRow method sets the value of statusCode to
indicate whether deleteRow succeeds or fails. If statusCode is 0, the method
has succeeded and the transaction is committed; otherwise, the transaction is
rolled back.

insertRow

Inserts a new row in the specified table.

Syntax insertRow (table)

Parameters

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Method of Cursor

Implemented in LiveWire 1.0

table A string specifying the name of the table in which to insert a row.
Chapter 10, LiveWire Database Service 585

Cursor
Description The insertRow method uses an updatable cursor to insert a row in the
specified table. See the cursor method for information about creating an
updatable cursor.

The location of the inserted row depends on the database vendor library. If you
need to get at the row after calling the insertRow method, you must first close
the existing cursor and then open a new cursor.

You can specify values for the row you are inserting as follows:

• By explicitly assigning values to each column in the cursor and then calling
the insertRow method.

• By navigating to a row with the next method, explicitly assigning values for
some columns, and then calling the insertRow method. Columns that are
not explicitly assigned values receive values from the row to which you
navigated.

• By not navigating to another record and then calling the insertRow
method. If you do not issue a next method, columns that are not explicitly
assigned values are null.

The insertRow method inserts a null value in any table columns that do not
appear in the cursor.

The insertRow method returns a status code based on a database server
message to indicate whether the method completed successfully. If successful,
the method returns a 0; otherwise, it returns a nonzero integer to indicate the
reason it failed. See Writing Server-Side JavaScript Applications for an
explanation of status codes.

Examples In some applications, such as a video-rental application, a husband, wife, and
children could all share the same account number but be listed under different
names. In this example, a user has just added a name to the accounts table
and wants to add a spouse’s name to the same account.

customerSet = database.cursor("select * from customer", true)

x=true
while (x) {

x = customerSet.next() }

customerSet.name = request.theName
customerSet.insertRow("accounts")
customerSet.close()
586 JavaScript Reference

Cursor
In this example, the next method navigates to the last row in the table, which
contains the most recently added account. The value of theName is passed in
by the request object and assigned to the name column in the customerSet
cursor. The insertRow method inserts a new row at the end of the table. The
value of the name column in the new row is the value of theName . Because the
application used the next method to navigate, the value of every other column
in the new row is the same as the value in the previous row.

next

Moves the current row to the next row in the cursor.

Syntax next()

Parameters None.

Returns False if the current row is the last row; otherwise, true.

Description Initially, the pointer (or current row) for a cursor or result set is positioned
before the first row returned. Use the next method to move the pointer
through the records in the cursor or result set. This method moves the pointer
to the next row and returns true as long as there is another row available.
When the cursor or result set has reached the last row, the method returns
false. Note that if the cursor is empty, this method always returns false.

Examples Example 1. This example uses the next method to navigate to the last row in
a cursor. The variable x is initialized to true. When the pointer is in the last row
of the cursor, the next method returns false and terminates the while loop.

customerSet = database.cursor("select * from customer", true)

x = true
while (x) {

x = customerSet.next() }

Example 2. In the following example, the rentalSet cursor contains columns
named videoId , rentalDate , and dueDate . The next method is called in a
while loop that iterates over every row in the cursor. When the pointer is on
the last row in the cursor, the next method returns false and terminates the
while loop.

Method of Cursor

Implemented in LiveWire 1.0
Chapter 10, LiveWire Database Service 587

Cursor
This example displays the three columns of the cursor in an HTML table:

<SERVER>
// Create a Cursor object
rentalSet = database.cursor("SELECT videoId, rentalDate, returnDate

FROM rentals")
</SERVER>

// Create an HTML table
<TABLE BORDER>
<TR>
<TH>Video ID</TH>
<TD>Rental Date</TD>
<TD>Due Date</TD>
</TR>

<SERVER>
// Iterate through each row in the cursor
while (rentalSet.next()) {
</SERVER>

// Display the cursor values in the HTML table
<TR>
<TH><SERVER>write(rentalSet.videoId)</SERVER></TH>
<TD><SERVER>write(rentalSet.rentalDate)</SERVER></TD>
<TD><SERVER>write(rentalSet.returnDate)</SERVER></TD>
</TR>

// Terminate the while loop
<SERVER>
}
</SERVER>

// End the table
</TABLE>

updateRow

Updates records in the current row of the specified table in the cursor.

Syntax updateRow (table)

Parameters

Method of Cursor

Implemented in LiveWire 1.0

table String specifying the name of the table to update.
588 JavaScript Reference

Cursor
Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description The updateRow method lets you use values in the current row of an updatable
cursor to modify a table. See the cursor method for information about creating
an updatable cursor. Before performing an updateRow , you must perform at
least one next with the cursor so the current row is set to a row.

Assign values to columns in the current row of the cursor, and then use the
updateRow method to update the current row of the table specified by the
table parameter. Column values that are not explicitly assigned are not
changed by the updateRow method.

The updateRow method returns a status code based on a database server
message to indicate whether the method completed successfully. If successful,
the method returns a 0; otherwise, it returns a nonzero integer to indicate the
reason it failed. See Writing Server-Side JavaScript Applications for an
explanation of the individual status codes.

Examples This example uses updateRow to update the returndate column of the
rentals table. The values of customerID and videoID are passed into the
cursor method as properties of the request object. When the videoReturn
Cursor object opens, the next method navigates to the only record returned
and updates the value in the returnDate field.

// Create a cursor containing the rented video
videoReturn = database.cursor("SELECT * FROM rentals WHERE

customerId = " + request.customerID + " AND
videoId = " + request.videoID, true)

// Position the pointer on the first row of the cursor
videoReturn.next()

// Assign today’s date to the returndate column
videoReturn.returndate = today

// Update the row
videoReturn.updateRow("rentals")
Chapter 10, LiveWire Database Service 589

Stproc
Stproc
Represents a call to a database stored procedure.

Created by The storedProc method of the database object or of a Connection object.
You do not call a Stproc constructor.

Description When finished with a Stproc object, use the close method to close it and
release the memory it uses. If you release a connection that has an open stored
procedure, the runtime engine waits until the stored procedure is closed before
actually releasing the connection.

If you do not explicitly close a stored procedure with the close method, the
JavaScript runtime engine on the server automatically tries to close all open
stored procedures when the associated database or Connection object goes
out of scope. This can tie up system resources unnecessarily. It can also lead to
unpredictable results.

You can use the prototype property of the Stproc class to add a property to
all Stproc instances. If you do so, that addition applies to all Stproc objects
running in all applications on your server, not just in the single application that
made the change. This allows you to expand the capabilities of this object for
your entire server.

Property
Summary

Method Summary

Server-side object

Implemented in Netscape Server 3.0

Property Descriptiohn

prototype Allows the addition of properties to a Stproc object.

Method Descriptiohn

close Closes a stored-procedure object.

outParamCount Returns the number of output parameters returned by a
stored procedure.

outParameters Returns the value of the specified output parameter.
590 JavaScript Reference

Stproc
Properties

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

Methods

close

Closes the stored procedure and frees the allocated memory.

Syntax close()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

resultSet Returns a new result set object.

returnValue Returns the return value for the stored procedure.

Property of Stproc

Implemented in LiveWire 1.0

Method of Stproc

Implemented in Netscape Server 3.0

Method Descriptiohn
Chapter 10, LiveWire Database Service 591

Stproc
Description The close method closes a stored procedure and releases the memory it uses.
If you do not explicitly close a stored procedure with the close method, the
JavaScript runtime engine on the server automatically closes it when the
corresponding client object goes out of scope.

outParamCount

Returns the number of output parameters returned by a stored procedure.

Syntax outParamCount()

Parameters None.

Returns The number of output parameters for the stored procedure. Informix stored
procedures do not have output parameters. Therefore for Informix, this method
always returns 0. You should always call this method before calling
outParameters , to ensure that the stored procedure has output parameters.

outParameters

Returns the value of the specified output parameter.

Syntax outParameters (n)

Parameters

Returns The value of the specified output parameter. This can be a string, number,
double, or object.

Description Do not use this method for Informix stored procedures, because they do not
have output parameters.

Method of Stproc

Implemented in Netscape Server 3.0

Method of Stproc

Implemented in Netscape Server 3.0

n Zero-based ordinal for the output parameter to return.
592 JavaScript Reference

Stproc
You should always call the outParamCount method before you call this
method. If outParamCount returns 0, the stored procedure has no output
parameters. In this situation, do not call this method.

You must retrieve result set objects before you call this method. Once you call
this method, you can't get any more data from a result set, and you can't get
any additional result sets.

resultSet

Returns a new result set object.

Syntax resultSet ()

Parameters None.

Description Running a stored procedure can create 0 or more result sets. You access the
result sets in turn by repeated calls to the resultSet method. See the
description of the Resultset for restrictions on when you can use this method
access the result sets for a stored procedure.

spobj = connobj.storedProc("getcusts");

// Creates a new result set object
resobj = spobj.resultSet();

returnValue

Returns the return value for the stored procedure.

Syntax returnValue()

Parameters None.

Returns For Sybase, this method always returns the return value of the stored
procedure.

Method of Stproc

Implemented in Netscape Server 3.0

Method of Stproc

Implemented in Netscape Server 3.0
Chapter 10, LiveWire Database Service 593

Resultset
For Oracle, this method returns null if the stored procedure did not return a
value or the return value of the stored procedure.

For Informix, DB2, and ODBC, this method always returns null.

Description You must retrieve result set objects before you call this method. Once you call
this method, you can't get any more data from a result set, and you can't get
any additional result sets.

Resultset
Represents a virtual table created by executing a stored procedure.

Created by The resultSet method of a Stproc object. The Resultset object does not
have a constructor.

Description For Sybase, Oracle, ODBC, and DB2 stored procedures, the stored-procedure
object has one result set object for each SELECT statement executed by the
stored procedure. For Informix stored procedures, the stored-procedure object
always has one result set object.

A result set has a property for each column in the SELECT statement used to
generate the result set. For Sybase, Oracle, and ODBC stored procedures, you
can refer to these properties by the name of the column in the virtual table. For
Informix and DB2 stored procedures, the columns are not named. For these
databases, you must use a numeric index to refer to the column.

Result set objects are not valid indefinitely. In general, once a stored procedure
starts, no interactions are allowed between the database client and the database
server until the stored procedure has completed. In particular, there are three
circumstances that cause a result set to be invalid:

1. If you create a result set as part of a transaction, you must finish using the
result set during that transaction. Once you either commit or rollback the
transaction, you can't get any more data from a result set, and you can't get
any additional result sets. For example, the following code is illegal:

database.beginTransaction();

Server-side object

Implemented in Netscape Server 3.0
594 JavaScript Reference

Resultset
spobj = database.storedProc("getcusts");
resobj = spobj.resultSet();
database.commitTransaction();
/* Illegal! Result set no longer valid! */
col1 = resobj[0];

2. You must retrieve result set objects before you call a stored-procedure
object’s returnValue or outParameters methods. Once you call either of
these methods, you can't get any more data from a result set, and you can't
get any additional result sets.

spobj = database.storedProc("getcusts");
resobj = spobj.resultSet();
retval = spobj.returnValue();
/* Illegal! Result set no longer valid! */
col1 = resobj[0];

3. Similarly, you must retrieve result set objects before you call the associated
Connection object’s cursor or SQLTable method. For example, the
following code is illegal:

spobj = database.storedProc("getcusts");
cursobj = database.cursor("SELECT * FROM ORDERS;");
/* Illegal! The result set is no longer available! */
resobj = spobj.resultSet();
col1 = resobj[0];

When finished with a Resultset object, use the close method to close it and
release the memory it uses. If you release a connection that has an open result
set, the runtime engine waits until the result set is closed before actually
releasing the connection.

If you do not explicitly close a result set with the close method, the JavaScript
runtime engine on the server automatically tries to close all open result sets
when the associated database or DbPool object goes out of scope. This can tie
up system resources unnecessarily. It can also lead to unpredictable results.

You can use the prototype property of the Resultset class to add a property
to all Resultset instances. If you do so, that addition applies to all Resultset
objects running in all applications on your server, not just in the single
application that made the change. This allows you to expand the capabilities of
this object for your entire server.
Chapter 10, LiveWire Database Service 595

Resultset
Property
Summary

Method Summary

Examples Assume you have the following Oracle stored procedure:

create or replace package timpack
as type timcurtype is ref cursor return customer%rowtype;
type timrentype is ref cursor return rentals%rowtype;
end timpack;

create or replace procedure timset4(timrows1 in out timpack.timcurtype,
timrows in out timpack.timrentype)
as begin
open timrows for select * from rentals;
open timrows1 for select * from customer;
end timset4;

Running this stored procedure creates two result sets you can access. In the
following code fragment the resobj1 result set has rows returned by the
timrows ref cursor and the resobj2 result set has the rows returned by the
timrows1 ref cursor.

spobj = database.storedProc("timset4");
resobj1 = spobj.resultSet();
resobj2 = spobj.resultSet();

Property Descriptiohn

prototype Allows the addition of properties to a Resultset object.

Method Descriptiohn

close Closes a result set object.

columnName Returns the name of a column in the result set.

columns Returns the number of columns in the result set.

next Moves the current row to the next row in the result set.
596 JavaScript Reference

Resultset
Properties

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

Methods

close

Closes the result set and frees the allocated memory.

Syntax close()

Parameters None.

Returns 0 if the call was successful; otherwise, a nonzero status code based on any error
message passed by the database. If the method returns a nonzero status code,
use the associated majorErrorCode and majorErrorMessage methods to
interpret the cause of the error.

Description The close method closes a cursor or result set and releases the memory it uses.
If you do not explicitly close a cursor or result set with the close method, the
JavaScript runtime engine on the server automatically closes all open cursors
and result sets when the corresponding client object goes out of scope.

Examples The following example creates the rentalSet cursor, performs certain
operations on it, and then closes it with the close method.

// Create a Cursor object
rentalSet = database.cursor("SELECT * FROM rentals")

Property of Resultset

Implemented in LiveWire 1.0

Method of Resultset

Implemented in Netscape Server 3.0
Chapter 10, LiveWire Database Service 597

Resultset
// Perform operations on the cursor
cursorOperations()

//Close the cursor
err = rentalSet.close()

See also Cursor

columnName

Returns the name of the column in the result set corresponding to the specified
number.

Syntax columnName (n)

Parameters

Returns The name of the column. For Informix stored procedures, this method for the
Resultset object always returns the string "Expression".

If your SELECT statement uses a wildcard (*) to select all the columns in a table,
the columnName method does not guarantee the order in which it assigns
numbers to the columns. That is, suppose you have this statement:

resSet = stObj.resultSet("select * from customer");

If the customer table has 3 columns, ID, NAME, and CITY, you cannot tell
ahead of time which of these columns corresponds to
resSet.columnName(0) . (Of course, you are guaranteed that successive calls
to columnName have the same result.) If the order matters to you, you can
instead hard-code the column names in the select statement, as in the following
statement:

resSet = stObj.resultSet("select ID, NAME, CITY from customer");

With this statement, resSet.columnName(0) is ID, resSet.columnName(1) is
NAME, and resSet.columnName(2) is CITY.

Method of Resultset

Implemented in Netscape Server 3.0

n Zero-based integer corresponding to the column in the query. The first
column in the result set is 0, the second is 1, and so on.
598 JavaScript Reference

Resultset
Examples The following example assigns the name of the first column in the
customerSet cursor to the variable header :

customerSet=database.cursor(SELECT * FROM customer ORDER BY name)
header = customerSet.columnName(0)

columns

Returns the number of columns in the result set.

Syntax columns()

Parameters None.

Returns The number of named and unnamed columns.

Examples See Example 2 of Cursor for an example of using the columns method with
the cursorColumn array.

The following example returns the number of columns in the custs cursor:

custs.columns()

next

Moves the current row to the next row in the result set.

Syntax next()

Parameters None.

Returns False if the current row is the last row; otherwise, true.

Description Initially, the pointer (or current row) for a cursor or result set is positioned
before the first row returned. Use the next method to move the pointer
through the records in the cursor or result set. This method moves the pointer

Method of Resultset

Implemented in Netscape Server 3.0

Method of Resultset

Implemented in Netscape Server 3.0
Chapter 10, LiveWire Database Service 599

Resultset
to the next row and returns true as long as there is another row available.
When the cursor or result set has reached the last row, the method returns
false. Note that if the cursor is empty, this method always returns false.

Examples Example 1. This example uses the next method to navigate to the last row in
a cursor. The variable x is initialized to true. When the pointer is in the last row
of the cursor, the next method returns false and terminates the while loop.

customerSet = database.cursor("select * from customer", true)

x = true
while (x) {

x = customerSet.next() }

Example 2. In the following example, the rentalSet cursor contains columns
named videoId , rentalDate , and dueDate . The next method is called in a
while loop that iterates over every row in the cursor. When the pointer is on
the last row in the cursor, the next method returns false and terminates the
while loop.

This example displays the three columns of the cursor in an HTML table:

<SERVER>
// Create a Cursor object
rentalSet = database.cursor("SELECT videoId, rentalDate, returnDate

FROM rentals")
</SERVER>

// Create an HTML table
<TABLE BORDER>
<TR>
<TH>Video ID</TH>
<TD>Rental Date</TD>
<TD>Due Date</TD>
</TR>

<SERVER>
// Iterate through each row in the cursor
while (rentalSet.next()) {
</SERVER>

// Display the cursor values in the HTML table
<TR>
<TH><SERVER>write(rentalSet.videoId)</SERVER></TH>
<TD><SERVER>write(rentalSet.rentalDate)</SERVER></TD>
<TD><SERVER>write(rentalSet.returnDate)</SERVER></TD>
</TR>

// Terminate the while loop
<SERVER>
600 JavaScript Reference

blob
}
</SERVER>

// End the table
</TABLE>

blob
Server-side object. Provides functionality for displaying and linking to BLOb
data.

Created by You do not create a separate blob object. Instead, if you know that the value of
a cursor property contains BLOb data, you use these methods to access that
data:

Conversely, to store BLOb data in a database, use the blob function.

Methods

blobImage

Displays BLOb data stored in a database.

Syntax cursorName.colName.blobImage (format, altText, align,
widthPixels, heightPixels, borderPixels, ismap)

Server-side object

Implemented in LiveWire 1.0

Method Descriptiohn

blobImage Displays BLOb data stored in a database.

blobLink Displays a link that references BLOb data with a link.

Method of blob

Implemented in LiveWire 1.0
Chapter 10, LiveWire Database Service 601

blob
Parameters

Returns An HTML IMG tag for the specified image type.

Description Use blobImage to create an HTML image tag for a graphic image in a standard
format such as GIF or JPEG.

The blobImage method fetches a BLOb from the database, creates a temporary
file (in memory) of the specified format, and generates an HTML image tag that
refers to the temporary file. The JavaScript runtime engine removes the
temporary file after the page is generated and sent to the client.

While creating the page, the runtime engine keeps the binary data that
blobImage fetches from the database in active memory, so requests that fetch a
large amount of data can exceed dynamic memory on the server. Generally it is
good practice to limit the number of rows retrieved at one time using
blobImage to stay within the server’s dynamic memory limits.

Examples Example 1. The following example extracts a row containing a small image
and a name. It writes HTML containing the name and a link to the image:

cursor = connobj.cursor("SELECT NAME, THUMB FROM FISHTBL WHERE ID=2")
write(cursor.name + " ")
write(cursor.thumb.blobImage("gif"))

format The image format. This can be GIF, JPEG, or any other MIME image
format.
The acceptable formats are specified in the type=image section of
the file $nshome\httpd-80\config\mime.types , where
$nshome is the directory in which you installed your server. The
client browser must also be able to display the image format.

altText (Optional) The value of the ALT attribute of the image tag. This
indicates text to display if the client browser does not display images.

align (Optional) The value of the ALIGN attribute of the image tag. This
can be "left" , "right" , or any other value supported by the
client browser.

widthPixels (Optional) The width of the image in pixels.

heightPixels (Optional) The height of the image in pixels.

borderPixels (Optional) The size of the outline border in pixels if the image is a
link.

ismap (Optional) True if the image is a clickable map. If this parameter is
true, the image tag has an ISMAP attribute; otherwise it does not.
602 JavaScript Reference

blob
write("
")
cursor.close()

These statements produce this HTML:

Anthia

Example 2. The following example creates a cursor from the rockStarBios
table and uses blobImage to display an image retrieved from the photos
column:

cursor = database.cursor("SELECT * FROM rockStarBios
WHERE starID = 23")

while(cursor.next()) {
write(cursor.photos.blobImage("gif", "Picture", "left",

30, 30, 0,false))
}
cursor.close()

This example displays an image as if it were created by the following HTML:

<IMG SRC="livewire_temp.gif" ALT="Picture" ALIGN=LEFT
WIDTH=30 HEIGHT=30 BORDER=0>

The livewire_temp.gif file in this example is the file in which the
rockStarBios table stores the BLOb data.

blobLink

Returns a link tag that references BLOb data with a link. Creates an HTML link
to the BLOb.

Syntax cursorName.colName.blobLink (mimeType, linkText)

Parameters

Method of blob

Implemented in LiveWire 1.0

mimeType The MIME type of the binary data. This can be image/gif or any other
acceptable MIME type, as specified in the Netscape server configuration
file $nshome\httpd-80\config\mime.types, where $nshome is the
directory in which you installed your server.

linkText The text to display in the link. This can be any JavaScript string
expression.
Chapter 10, LiveWire Database Service 603

blob
Returns An HTML link tag.

Description Use blobLink if you do not want to display graphics (to reduce bandwidth
requirements) or if you want to provide a link to an audio clip or other
multimedia content not viewable inline.

The blobLink method fetches BLOb data from the database, creates a
temporary file in memory, and generates a hypertext link to the temporary file.
The JavaScript runtime engine on the server removes the temporary files that
blobLink creates after the user clicks the link or sixty seconds after the request
has been processed.

The runtime engine keeps the binary data that blobLink fetches from the
database in active memory, so requests that fetch a large amount of data can
exceed dynamic memory on the server. Generally it is good practice to limit the
number of rows retrieved at one time using blobLink to stay within the
server’s dynamic memory limits.

Example Example 1. The following statements extract a row containing a large image
and a name. It writes HTML containing the name and a link to the image:

cursor = connobj.cursor("SELECT NAME, PICTURE FROM FISHTBL WHERE ID=2")
write(cursor.name + " ")
write(cursor.picture.blobLink("image/gif", "Link" + cursor.id))
write("
")
cursor.close()

These statements produce this HTML:

Anthia Link2

Example 2. The following example creates a cursor from the rockStarBios
table and uses blobLink to create links to images retrieved from the photos
column:

write("Click a link to display an image:<P>")
cursor = database.cursor("select * from rockStarBios")
while(cursor.next()) {

write(cursor.photos.blobLink("image/gif", "Image " + cursor.id))
write("
")

}
cursor.close()

This example generates the following HTML:

Click a link to display an image:<P>
Image 1

Image 2

Image 3

604 JavaScript Reference

C h a p t e r

11
Session Management Service
This chapter contains those server-side objects associated with managing a
session, including request , client , project , server , and Lock .

Table 11.1 summarizes the objects in this chapter.

Table 11.1 Session management objects

Object Description

client Encapsulates information about a client/application pair,
allowing that information to last longer than a single
HTTP request.

Lock Provides functionality for safely sharing data among
requests, clients, and applications.

project Encapsulates information about an application that lasts
until the application is stopped on the server.

request Encapsulates information about a single HTTP request.

server Encapsulates global information about the server that
lasts until the server is stopped.
Chapter 11, Session Management Service 605

request
request
Contains data specific to the current client request.

Created by The JavaScript runtime engine on the server automatically creates a request
object for each client request.

Description The JavaScript runtime engine on the server creates a request object each time
the client makes a request of the server. The runtime engine destroys the
request object after the server responds to the request, typically by providing
the requested page.

The properties listed below are read-only properties that are initialized
automatically when a request object is created. In addition to these predefined
properties, you can create custom properties to store application-specific data
about the current request.

Property
Summary

Method Summary None.

Server-side object

Implemented in LiveWire 1.0

Property Descriptiohn

agent Provides name and version information about the client software.

imageX The horizontal position of the mouse pointer when the user
clicked the mouse over an image map.

imageY The vertical position of the mouse pointer when the user clicked
the mouse over an image map.

inputName Represents an input element on an HTML form. (There is not a
property whose name is inputName . Rather, each instance of
request has properties named after each input element.)

ip Provides the IP address of the client.

method Provides the HTTP method associated with the request.

protocol Provides the HTTP protocol level supported by the client’s
software.
606 JavaScript Reference

request
Examples Example 1. This example displays the values of the predefined properties of
the request object. In this example, an HTML form is defined as follows:

<FORM METHOD="post" NAME="idForm" ACTION="hello.html">
<P>Last name:

<INPUT TYPE="text" NAME="lastName" SIZE="20">

First name:

<INPUT TYPE="text" NAME="firstName" SIZE="20">
</FORM>

The following code displays the values of the request object properties that
are created when the form is submitted:

agent = <SERVER>write(request.agent)</SERVER>

ip = <SERVER>write(request.ip)</SERVER>

method = <SERVER>write(request.method)</SERVER>

protocol = <SERVER>write(request.protocol)</SERVER>

lastName = <SERVER>write(request.lastName)</SERVER>

firstName = <SERVER>write(request.firstName)</SERVER>

When it executes, this code displays information similar to the following:

agent = "Mozilla/2.0 (WinNT;I)"
ip = "165.327.114.147"
method = "GET"
protocol = "HTTP/1.0"
lastName = "Schaefer"
firstName = "Jesse"

Example 2. The following example creates the requestDate property and
initializes it with the current date and time:

request.requestDate = new Date()

Example 3. When a user clicks the following link, the info.html page is
loaded, request.accessedFrom is created and initialized to "hello.html" ,
and request.formId is created and initialized to "047" .

Click here for

additional information.

See also client , project , server
Chapter 11, Session Management Service 607

request
Properties

Custom properties

You can create a property for the request object by assigning it a name and a
value. For example, you can create a request property to store the date and
time that a request is received so you can enter the date into the page content.

You can also create request object properties by encoding them in a URL.
When a user navigates to the URL by clicking its link, the properties are created
and instantiated to values that you specify. The properties are valid on the
destination page.

Use the following syntax to encode a request property in a URL:

where:

• URL is the URL the page that will get the new request properties.

• propertyName is the name of the property you are creating.

• value is the initial value of the new property.

Use escape to encode non-alphanumeric values in the URL string.

You can also create custom properties for the request object.

agent

Provides name and version information about the client software.

Description The agent property identifies the client software. Use this information to
conditionally employ certain features in an application.

Property of request

Read-only

Implemented in LiveWire 1.0
608 JavaScript Reference

request
The value of the agent property is the same as the value of the userAgent
property of the client-side navigator object. The agent property specifies
client information in the following format:

codeName/releaseNumber (platform ; country ; platformIdentifier)

The values contained in this format are the following:

• codeName is the code name of the client. For example, "Mozilla" specifies
Navigator.

• releaseNumber is the version number of the client. For example, "2.0b4"
specifies Navigator 2.0, beta 4.

• platform is the platform upon which the client is running. For example,
"Win16" specifies a 16-bit version of Windows, such as Windows 3.11.

• country is either "I" for the international release or "U" for the domestic
U.S. release. The domestic release has a stronger encryption feature than
the international release.

• platformIdentifier is an optional identifier that further specifies the
platform. For example, in Navigator 1.1, platform is "windows" and
platformIdentifier is "32bit" . In Navigator 2.0, both pieces of
information are contained in the platform designation. For example, in
Navigator 2.0, the previous platform is expressed as "WinNT" .

Examples The following example displays client information for Navigator 2.0 on
Windows NT:

write(request.agent)
\\Displays "Mozilla/2.0 (WinNT;I)"

The following example evaluates the request.agent property and runs the
oldBrowser procedure for clients other than Navigator 2.0. If the browser is
Navigator 2.0, the currentBrowser function executes.

<SERVER>
var agentVar=request.agent
if (agentVar.indexOf("2.0")==-1)

oldBrowser()
else

currentBrowser()
</SERVER>

See also request.ip , request.method , request.protocol
Chapter 11, Session Management Service 609

request
imageX

The horizontal position of the mouse pointer when the user clicked the mouse
over an image map.

Description The ISMAP attribute of the IMG tag indicates a server-based image map. When
the user clicks the mouse with the pointer over an image map, the horizontal
and vertical position of the pointer are returned to the server.

The imageX property returns the horizontal position of the mouse cursor when
the user clicks on an image map.

Examples Suppose you define the following image map:

<IMG SRC="images\map.gif" WIDTH=599 WIDTH=424 BORDER=0 ISMAP
ALT="SANTA CRUZ COUNTY">

Note the ISMAP attribute that makes the image a clickable map. When the user
clicks the mouse on the image, the page mapchoice.html will have properties
request.imageX and request.imageY based on the mouse cursor position
where the user clicked.

See also request.imageY

imageY

The vertical position of the mouse pointer when the user clicked the mouse
over an image map.

Description The ISMAP attribute of the IMG tag indicates a server-based image map. When
the user clicks the mouse with the pointer over an image map, the horizontal
and vertical position of the pointer are returned to the server.

Property of request

Read-only

Implemented in LiveWire 1.0

Property of request

Read-only

Implemented in LiveWire 1.0
610 JavaScript Reference

request
The imageY property returns the vertical position of the mouse cursor when the
user clicks on an image map.

Examples See example for imageX .

See also request.imageX

inputName

Represents an input element on an HTML form.

Description Each input element in an HTML form corresponds to a property of the request
object. The name of each of these properties is the name of the field on the
associated form. inputName is a variable that represents the value of the name
property of an input field on a submitted form. By default, the value of the
JavaScript name property is the same as the HTML NAME attribute.

Examples The following HTML source creates the request.lastName and the
request.firstName properties when idForm is submitted:

<FORM METHOD="post" NAME="idForm" ACTION="hello.html">
<P>Last name:

<INPUT TYPE="text" NAME="lastName" SIZE="20">

First name:

<INPUT TYPE="text" NAME="firstName" SIZE="20">
</FORM>

ip

Provides the IP address of the client.

Description The IP address is a set of four numbers between 0 and 255, for example,
198.217.226.34. You can use the IP address to authorize or record access in
certain situations.

Property of request

Read-only

Implemented in LiveWire 1.0

Property of request

Read-only

Implemented in LiveWire 1.0
Chapter 11, Session Management Service 611

request
Examples In the following example, the indexOf method evaluates request.ip to
determine if it begins with the string "198.217.226" . The if statement
executes a different function depending on the result of the indexOf method.

<SERVER>
var ipAddress=request.ip
if (ipAddress.indexOf("198.217.226.")==-1)

limitedAccess()
else

fullAccess()
</SERVER>

See also request.agent , request.method , request.protocol

method

Provides the HTTP method associated with the request.

Description The value of the method property is the same as the value of the method
property of the client-side Form object. That is, method reflects the METHOD
attribute of the FORM tag. For HTTP 1.0, the method property evaluates to either
"get" or "post" . Use the method property to determine the proper response
to a request.

Examples The following example executes the postResponse function if the method
property evaluates to "post" . If method evaluates to anything else, it executes
the getResponse function.

<SERVER>
if (request.method=="post")

postResponse()
else

getResponse()
</SERVER>

See also request.agent , request.ip , request.protocol

Property of request

Read-only

Implemented in LiveWire 1.0
612 JavaScript Reference

client
protocol

Provides the HTTP protocol level supported by the client’s software.

Description For HTTP 1.0, the protocol value is "HTTP/1.0" . Use the protocol property to
determine the proper response to a request.

Examples In the following example, the currentProtocol function executes if
request.protocol evaluates to "HTTP/1.0" .

<SERVER>
if (request.protocol=="HTTP/1.0"

currentProtocol()
else

unknownProtocol()
</SERVER>

See also request.agent , request.ip , request.method

client
Contains data specific to an individual client.

Created by The JavaScript runtime engine on the server automatically creates a client
object for each client/application pair.

Description The JavaScript runtime engine on the server constructs a client object for
every client/application pair. A browser client connected to one application has
a different client object than the same browser client connected to a different
application. The runtime engine constructs a new client object each time a
user accesses an application; there can be hundreds or thousands of client
objects active at the same time.

Property of request

Read-only

Implemented in LiveWire 1.0

Server-side object

Implemented in LiveWire 1.0
Chapter 11, Session Management Service 613

client
You cannot use the client object on your application’s initial page. This page
is run when the application is started on the server. At this time, there is not a
client request, so there is no available client object.

The runtime engine constructs and destroys the client object for each client
request. However, at the end of a request, the runtime engine saves the names
and values of the client object’s properties so that when the same user returns
to the application with a subsequent request, the runtime engine can construct
a new client object with the saved data. Thus, conceptually you can think of
the client object as remaining for the duration of a client’s session with the
application. There are several different ways to maintain client property
values; for more information, see Writing Server-Side JavaScript Applications.

All requests by one client use the same client object, as long as those requests
occur within the lifetime of that client object. By default, a client object
persists until the associated client has been inactive for 10 minutes. You can use
the expiration method to change this default lifetime or the destroy method
to explicitly destroy the client object.

Use the client object to maintain data that is specific to an individual client.
Although many clients can access an application simultaneously, the individual
client objects keep their data separate. Each client object can track the
progress of an individual client across multiple requests to the same
application.

Method Summary

Examples Example 1. This example dynamically assigns a customer ID number that is
used for the lifetime of an application session. The assignId function creates
an ID based on the user’s IP address, and the customerId property saves the
ID.

<SERVER>client.customerId = assignId(request.ip)</SERVER>

See also the examples for the project object for a way to sequentially assign a
customer ID.

Method Descriptiohn

destroy Destroys a client object.

expiration Specifies the duration of a client object.
614 JavaScript Reference

client
Example 2. This example creates a customerId property to store a customer
ID that a user enters into a form. The form is defined as follows:

<FORM NAME="getCustomerInfo" METHOD="post">
<P>Enter your customer ID:

<INPUT TYPE="text" NAME="customerNumber">
</FORM>

The following code assigns the value entered in the customerNumber field
from the temporary request.clientNumber to the more permanent
client.customerId :

<SERVER>client.customerId=request.customerNumber</SERVER>

See also project , request , server

Properties
The client object has no predefined properties. You create custom properties
to contain any client-specific data that is required by an application. The
runtime engine does not save client objects that have no property values.

You can create a property for the client object by assigning it a name and a
value. For example, you can create a client property to store a customer ID at
the beginning of an application so a user does not have to enter it with each
request.

Because of the techniques used to maintain client properties across multiple
client requests, there is one major restriction on client property values. The
JavaScript runtime engine on the server converts the values of all of the client
object’s properties to strings.

The runtime engine cannot convert an object to a string. For this reason, you
cannot assign an object as the value of a client property. If a client property
value represents another data type, such as a number, you must convert the
value from a string before using it. The core JavaScript parseInt and
parseFloat functions are useful for converting to integer and floating point
values.
Chapter 11, Session Management Service 615

client
Methods

destroy

Destroys a client object.

Syntax destroy()

Description The destroy method explicitly destroys the client object that issues it and
removes all properties from the client object. If you do not explicitly issue a
destroy method, the JavaScript runtime engine on the server automatically
destroys the client object when its lifetime expires. The expiration method
sets the lifetime of a client object; by default, the lifetime is 10 minutes.

If you are using client-cookies to maintain the client object, destroy
eliminates all client property values, but it does not affect what is stored in
Navigator cookie file. Use expiration with an argument of 0 seconds to
remove all client properties stored in the cookie file.

When using client URL encoding to maintain the client object, destroy
removes all client properties after the method call. However, any links in a
page before the call to destroy retain properties in their URLs. Therefore, you
should generally call destroy either at the top or bottom of the page when
using client URL maintenance.

Examples The following method destroys the client object that calls it:

<server>client.destroy()</server>

See also client.expiration

expiration

Specifies the duration of a client object.

Method of client

Implemented in LiveWire 1.0

Method of client

Implemented in LiveWire 1.0
616 JavaScript Reference

project
Syntax expiration(seconds)

Parameters

Description By default, the JavaScript runtime engine on the server destroys the client
object after the client has been inactive for 10 minutes. This default lifetime lets
the runtime engine clean up client objects that are no longer necessary.

Use the expiration method to explicitly control the expiration of a client
object, making it longer or shorter than the default. You must use expiration
in each page of an application for which you want a client expiration other
than the default. Any page that does not specify an expiration will use the
default of 10 minutes.

Client expiration does not apply if using client URL encoding to maintain the
client object. In this case, client properties are stored solely in URLs on HTML
pages. The runtime engine cannot remove those properties.

Examples The following example extends the amount of client inactivity before expiration
to 1 hour. This code is issued when an application is first launched.

<SERVER>client.expiration(3600)</SERVER>

See also client.destroy

project
Contains data for an entire application.

Created by The JavaScript runtime engine on the server automatically creates a project
object for each application running on the server.

Description The JavaScript runtime engine on the server creates a project object when an
application starts and destroys the project object when the application or
server stops. The typical project object lifetime is days or weeks.

seconds An integer representing the number of seconds of client inactivity
before the client object expires.

Server-side object

Implemented in LiveWire 1.0
Chapter 11, Session Management Service 617

project
Each client accessing the same application shares the same project object.
Use the project object to maintain global data for an entire application. Many
clients can access an application simultaneously, and the project object lets
these clients share information.

The runtime engine creates a set of project objects for each distinct Netscape
HTTPD process running on the server. Because several server HTTPD
processes may be running on different port numbers, the runtime engine
creates a set of project objects for each process.

You can lock the project object to ensure that different clients do not change
its properties simultaneously. When one client locks the project object, other
clients must wait before they can lock it. See Lock for more information about
locking the project object.

Method Summary

Examples Example 1. This example creates the lastID property and assigns a value to it
by incrementing an existing value.

project.lastID = 1 + parseInt(project.lastID, 10)

Example 2. This example increments the value of the lastID property and
uses it to assign a value to the customerID property.

project.lock()
project.lastID = 1 + parseInt(project.lastID, 10);
client.customerID = project.lastID;
project.unlock();

In the previous example, notice that the project object is locked while the
customerID property is assigned, so no other client can attempt to change the
lastID property at the same time.

See also client , request , server

Method Descriptiohn

lock Obtains the lock.

unlock Releases the lock.
618 JavaScript Reference

project
Properties

The project object has no predefined properties. You create custom
properties to contain project-specific data that is required by an application.

You can create a property for the project object by assigning it a name and a
value. For example, you can create a project object property to keep track of
the next available Customer ID. Any client that accesses the application without
a Customer ID is sequentially assigned one, and the value of the ID is
incremented for each initial access.

Methods

lock

Obtains the lock. If another thread has the lock, this method waits until it can
get the lock.

Syntax lock()

Parameters None.

Returns Nothing.

Description You can obtain a lock for an object to ensure that different clients do not access
a critical section of code simultaneously. When an application locks an object,
other client requests must wait before they can lock the object.

Note that this mechanism requires voluntary compliance by asking for the lock
in the first place.

See also Lock , project.unlock

Method of project

Implemented in LiveWire 1.0
Chapter 11, Session Management Service 619

server
unlock

Releases the lock.

Syntax unlock()

Parameters None.

Returns False if it fails; otherwise, true. Failure indicates an internal JavaScript error or
that you attempted to unlock a lock that you don’t own.

Description If you unlock a lock that is unlocked, the resulting behavior is undefined.

See also Lock , project.lock

server
Contains global data for the entire server.

Created by The JavaScript runtime engine on the server automatically creates a single
server object to store information common to all JavaScript applications
running on the web server.

Description The JavaScript runtime engine on the server creates a server object when the
server starts and destroys it when the server stops. Every application on a
server shares the same server object. Use the server object to maintain global
data for the entire server. Many applications can run on a server
simultaneously, and the server object lets them share information.

The runtime engine creates a server object for each distinct Netscape HTTPD
process running on the server.

Method of project

Implemented in LiveWire 1.0

Server-side object

Implemented in LiveWire 1.0
620 JavaScript Reference

server
The properties listed below are read-only properties that are initialized
automatically when a server object is created. These properties provide
information about the server process. In addition to these predefined
properties, you can create custom properties.

You can lock the server object to ensure that different applications do not
change its properties simultaneously. When one application locks the server
object, other applications must wait before they can lock it.

Property
Summary

Method Summary

Examples The following example displays the values of the predefined server object
properties:

<P>server.host = <SERVER>write(server.host);</SERVER>

server.hostname = <SERVER>write(server.hostname);</SERVER>

server.protocol = <SERVER>write(server.protocol);</SERVER>

server.port = <SERVER>write(server.port);</SERVER>

The preceding code displays information such as the following:

server.host = www.myWorld.com
server.hostname = www.myWorld.com:85
server.protocol = http:
server.port = 85

See also client , project , request

Property Descriptiohn

host String specifying the server name, subdomain, and domain name.

hostname String containing the full hostname of the server, including the server
name, subdomain, domain, and port number.

port String indicating the port number used for the server.

protocol String indicating the communication protocol used by the server.

Method Descriptiohn

lock Obtains the lock.

unlock Releases the lock.
Chapter 11, Session Management Service 621

server
Properties

host

A string specifying the server name, subdomain, and domain name.

Description The host property specifies a portion of a URL. The host property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon. When
the port property is 80 (the default), the host property is the same as the
hostname property.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the hostname and port.

See also server.hostname , server.port , server.protocol

hostname

A string containing the full hostname of the server, including the server name,
subdomain, domain, and port number.

Description The hostname property specifies a portion of a URL. The hostname property is
the concatenation of the host and port properties, separated by a colon.
When the port property is 80 (the default), the host property is the same as
the hostname property.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the hostname and port.

See also server.host , server.port , server.protocol

Property of server

Read-only

Implemented in LiveWire 1.0

Property of server

Read-only

Implemented in LiveWire 1.0
622 JavaScript Reference

server
port

A string indicating the port number used for the server.

Description The port property specifies a portion of the URL. The port property is a
substring of the hostname property. The hostname property is the
concatenation of the host and port properties, separated by a colon.

The default value of the port property is 80. When the port property is set to
the default, the values of the host and hostname properties are the same.

See Section 3.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the port.

See also server.host , server.hostname , server.protocol

protocol

A string indicating the communication protocol used by the server.

Description The protocol property specifies the beginning of the URL, up to and including
the first colon. The protocol indicates the access method of the URL. For
example, a protocol of "http:" specifies HyperText Transfer Protocol.

The protocol property represents the scheme name of the URL. See Section
2.1 of RFC 1738 (http://www.cis.ohio-state.edu/htbin/rfc/

rfc1738.html) for complete information about the protocol.

See also server.host , server.hostname , server.port

Property of server

Read-only

Implemented in LiveWire 1.0

Property of server

Read-only

Implemented in LiveWire 1.0
Chapter 11, Session Management Service 623

server
Methods

lock

Obtains the lock. If another thread has the lock, this method waits until it can
get the lock.

Syntax lock()

Parameters None

Returns Nothing.

Description You can obtain a lock for an object to ensure that different clients do not access
a critical section of code simultaneously. When an application locks an object,
other client requests must wait before they can lock the object.

Note that this mechanism requires voluntary compliance by asking for the lock
in the first place.

See also Lock , server.lock

unlock

Releases the lock.

Syntax unlock()

Parameters None.

Returns False if it fails; otherwise, true. Failure indicates an internal JavaScript error or
that you attempted to unlock a lock that you don't own.

Description If you unlock a lock that is unlocked, the resulting behavior is undefined.

See also Lock , server.unlock

Method of server

Implemented in LiveWire 1.0

Method of server

Implemented in LiveWire 1.0
624 JavaScript Reference

Lock
Lock
Provides a way to lock a critical section of code.

Created by The Lock constructor:

Lock();

Parameters None.

Failure to construct a new Lock object indicates an internal JavaScript error,
such as out of memory.

Method Summary

See also project.lock , project.unlock , server.lock , server.unlock

Methods
Syntax lock

Obtains the lock. If someone else has the lock, this method blocks until it can
get the lock, the specified timeout period has elapsed, or an error occurs.

Syntax lock(timeout)

Server-side object

Implemented in Netscape Server 3.0

Method Descriptiohn

lock Obtains the lock.

isValid Verifies that this Lock object was properly constructed.

unlock Releases the lock.

Method of Lock

Implemented in Netscape Server 3.0
Chapter 11, Session Management Service 625

Lock
Parameters

Returns True if it succeeds in obtaining the lock within the specified timeout. False if it
did not obtain the lock.

Description You can obtain a lock for an object to ensure that different clients do not access
a critical section of code simultaneously. When an application locks an object,
other client requests must wait before they can lock the object.

Note that this mechanism requires voluntary compliance by asking for the lock
in the first place.

See also Lock.unlock , Lock.isValid , project.lock , server.lock

isValid

Verifies that this Lock object was properly constructed.

Syntax isValid()

Parameters None.

Returns True, if this object was properly constructed; otherwise, false.

Description It is very rare that your Lock object would not be properly constructed. This
happens only if the runtime engine runs out of system resources while creating
the object.

Examples This code creates a Lock object and verifies that nothing went wrong creating
it:

// construct a new Lock and save in project
project.ordersLock = new Lock();
if (! project.ordersLock.isValid()) {

// Unable to create a Lock. Redirect to error page
...

}

timeout An integer indicating the number of seconds to wait for the lock. If 0,
there is no timeout; that is, the method waits indefinitely to obtain the
lock. The default value is 0, so if you do not specify a value, the method
waits indefinitely.

Method of Lock

Implemented in Netscape Server 3.0
626 JavaScript Reference

Lock
See also Lock.lock , Lock.unlock

unlock

Releases the lock.

Syntax unlock()

Parameters None.

Returns False if it fails; otherwise, true. Failure indicates an internal JavaScript error or
that you attempted to unlock a lock that you don't own.

Description If you unlock a lock that is unlocked, the resulting behavior is undefined.

See also Lock.lock , Lock.isValid , project.unlock , server.unlock

Method of Lock

Implemented in Netscape Server 3.0
Chapter 11, Session Management Service 627

Lock
628 JavaScript Reference

C h a p t e r

12
Utilities
This chapter contains the server-side objects File and SendMail .

Table 12.1 summarizes the objects in this chapter.

File
Lets an application interact with a physical file on the server.

Created by The File constructor:

new File("path")

Table 12.1 Miscellaneous objects

Object Description

File Provides access to the server’s file system.

SendMail Provides functionality for sending electronic mail from
your JavaScript application.

Server-side object

Implemented in LiveWire 1.0
Chapter 12, Utilities 629

File
Parameters

Description You can use the File object to write to or read from a file on the server. For
security reasons, you cannot programmatically access the file system of client
machines.

You can use the File object to generate persistent HTML or data files without
using a database server. Information stored in a file is preserved when the
server goes down.

Exercise caution when using the File object. An application can read and write
files anywhere the operating system allows. If you create an application that
writes to or reads from your file system, you should ensure that users cannot
misuse this capability.

Specify the full path, including the filename, for the path parameter of the
File object you want to create. The path must be an absolute path; do not use
a relative path.

If the physical file specified in the path already exists, the JavaScript runtime
engine references it when you call methods for the object. If the physical file
does not exist, you can create it by calling the open method.

You can display the name and path of a physical file by calling the write
function and passing it the name of the related File object.

A pointer indicates the current position in a file. If you open a file in the a or a+
mode, the pointer is initially positioned at the end of the file; otherwise, it is
initially positioned at the beginning of the file. In an empty file, the beginning
and end of the file are the same. Use the eof , getPosition , and setPosition
methods to specify and evaluate the position of the pointer. See the open
method for a description of the modes in which you can open a file.

You can use the prototype property of the File object to add a property to all
File instances. If you do so, that addition applies to all File objects running in
all applications on your server, not just in the single application that made the
change. This allows you to expand the capabilities of this object for your entire
server.

path The path and filename in the format of the server’s file system
(not a URL path).
630 JavaScript Reference

File
Property
Summary

Method Summary

Property Descriptiohn

prototype Allows the addition of properties to a File object.

Method Descriptiohn

byteToString Converts a number that represents a byte into a string.

clearError Clears the current file error status.

close Closes an open file on the server.

eof Determines whether the pointer is beyond the end of an open
file.

error Returns the current error status.

exists Tests whether a file exists.

flush Writes the content of the internal buffer to a file.

getLength Returns the length of a file.

getPosition Returns the current position of the pointer in an open file.

open Opens a file on the server.

read Reads data from a file into a string.

readByte Reads the next byte from an open file and returns its numeric
value.

readln Reads the current line from an open file and returns it as a
string.

setPosition Positions a pointer in an open file.

stringToByte Converts the first character of a string into a number that
represents a byte.

write Writes data from a string to a file on the server.

writeByte Writes a byte of data to a binary file on the server.

writeln Writes a string and a carriage return to a file on the server.
Chapter 12, Utilities 631

File
Examples Example 1. The following example creates the File object userInfo that
refers to a physical file called info.txt . The info.txt file resides in the same
directory as the application’s .web file:

userInfo = new File("info.txt")

Example 2. In the following example, the File object refers to a physical file
with an absolute path:

userInfo = new File("c:\\data\\info.txt")

Example 3. The following example displays the name of a File object
onscreen.

userInfo = new File("c:\\data\\info.txt")
write(userInfo)

Properties

prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

Methods

byteToString

Converts a number that represents a byte into a string.

Syntax byteToString(number)

Property of File

Implemented in LiveWire 1.0

Method of File

Static

Implemented in LiveWire 1.0
632 JavaScript Reference

File
Parameters

Description Use the stringToByte and byteToString methods to convert data between
binary and ASCII formats. The byteToString method converts the number
argument into a string.

Because byteToString is a static method of File , you always use it as
File.byteToString() , rather than as a method of a File object you created.

If the argument you pass into the byteToString method is not a number, the
method returns an empty string.

Examples The following example creates a copy of a text file, one character at a time. In
this example, a while loop executes until the pointer is positioned past the end
of the file. Inside the loop, the readByte method reads the current character
from the source file, and the byteToString method converts it into a string;
the write method writes it to the target file. The last readByte method
positions the pointer past the end of the file, ending the while loop. See the
File object for a description of the pointer.

// Create the source File object
source = new File("c:\data\source.txt")

// If the source file opens successfully, create a target file
if (source.open("r")) {

target = new File("c:\data\target.txt")
target.open("w")

// Copy the source file to the target
while (!source.eof()) {

data = File.byteToString(source.readByte())
target.write(data);

}
source.close()

}
target.close()

This example is similar to the example used for the write method of File .
However, this example reads bytes from the source file and converts them to
strings, instead of reading strings from the source file.

See also File.stringToByte

number A number that represents a byte.
Chapter 12, Utilities 633

File
clearError

Clears the current file error status.

Syntax clearError()

Parameters None.

Description The clearError method clears both the file error status (the value returned by
the error method) and the value returned by the eof method.

Examples See the example for the error method.

See also File.error , File.eof

close

Closes an open file on the server.

Syntax close()

Parameters None.

Description When your application is finished with a file, you should close the file by
calling the close method. If the file is not open, the close method fails. This
method returns true if it is successful; otherwise, it returns false.

Examples See the examples for the open method.

See also File.open , blob

eof

Determines whether the pointer is beyond the end of an open file.

Method of File

Implemented in LiveWire 1.0

Method of File

Implemented in LiveWire 1.0

Method of File
634 JavaScript Reference

File
Syntax eof()

Parameters None.

Description Use the eof method to determine whether the position of the pointer is beyond
the end of a file. See File for a description of the pointer.

A call to setPosition resulting in a location greater than
fileObjectName.getLength places the pointer beyond the end of the file.
Because all read operations also move the pointer, a read operation that reads
the last byte of data (or character) in a file positions the pointer beyond the end
of the file.

The eof method returns true if the pointer is beyond the end of the file;
otherwise, it returns false.

Examples In this example, a while loop executes until the pointer is positioned past the
end of the file. While the pointer is not positioned past the end of the file, the
readln method reads the current line, and the write method displays it. The
last readln method positions the pointer past the end of the file, ending the
while loop.

x = new File("c:\data\userInfo.txt")
if (x.open("r")) {

while (!x.eof()) {
line = x.readln()
write(line+"
");

}
x.close();

}

See also File.getPosition , File.setPosition

error

Returns the current error status.

Syntax error()

Implemented in LiveWire 1.0

Method of File

Implemented in LiveWire 1.0
Chapter 12, Utilities 635

File
Parameters None

Returns 0 if there is no error.

-1 if the file specified in fileObjectName is not open

Otherwise, the method returns a nonzero integer indicating the error status.
Specific error status codes are platform-dependent. Refer to your operating
system documentation for more information.

Examples The following example uses the error method in an if statement to take
different actions depending on whether a call to the open method succeeded.
After the if statement completes, the error status is reset with the clearError
method.

userInput = new File("c:\data\input.txt")
userInput.open("w")
if (userInput.error() == 0) {

fileIsOpen() }
else {

fileIsNotOpen() }
userInput.clearError()

See also File.clearError

exists

Tests whether a file exists.

Syntax exists()

Parameters None.

Returns True if the file exists; otherwise, false.

Examples The following example uses an if statement to take different actions
depending on whether a physical file exists. If the file exists, the JavaScript
runtime engine opens it and calls the writeData function. If the file does not
exist, the runtime engine calls the noFile function.

dataFile = new File("c:\data\mytest.txt")

Method of File

Implemented in LiveWire 1.0
636 JavaScript Reference

File
if (dataFile.exists() ==true) {
dataFile.open("w")
writeData()
dataFile.close()

}
else {

noFile()
}

flush

Writes the content of the internal buffer to a file.

Syntax flush()

Parameters None.

Description When you write to a file with any of the File object methods (write ,
writeByte , or writeln), the data is buffered internally. The flush method
writes the buffer to the physical file. The flush method returns true if it is
successful; otherwise, it returns false.

Do not confuse the flush method of the File object with the top-level flush
function. The flush function flushes a buffer of data and causes it to display in
the client browser; the flush method flushes a buffer of data to a physical file.

Examples See the write method for an example of the flush method.

See also File.write , File.writeByte , File.writeln

getLength

Returns the length of a file.

Syntax getLength()

Parameters None.

Method of File

Implemented in LiveWire 1.0

Method of File

Implemented in LiveWire 1.0
Chapter 12, Utilities 637

File
Description If this method is successful, it returns the number of bytes in a binary file or
characters in a text file; otherwise, it returns -1.

Examples The following example copies a file one character at a time. This example uses
getLength as a counter in a for loop to iterate over every character in the file.

// Create the source File object
source = new File("c:\data\source.txt")

// If the source file opens successfully, create a target file
if (source.open("r")) {

target = new File("c:\data\target.txt")
target.open("a")

// Copy the source file to the target
for (var x = 0; x < source.getLength(); x++) {

source.setPosition(x)
data = source.read(1)
target.write(data)

}
source.close()

}
target.close()

getPosition

Returns the current position of the pointer in an open file.

Syntax getPosition()

Parameters None

Returns -1 if there is an error.

Description Use the getPosition method to determine the position of the pointer in a file.
See the File object for a description of the pointer. The getPosition method
returns the current pointer position; the first byte in a file is byte 0.

Examples The following examples refer to the file info.txt , which contains the string
“Hello World.” The length of info.txt is 11 bytes.

Example 1. In the following example, the first call to getPosition shows that
the default pointer position is 0 in a file that is opened for reading. This
example also shows that a call to the read method repositions the pointer.

Method of File

Implemented in LiveWire 1.0
638 JavaScript Reference

File
dataFile = new File("c:\data\info.txt")
dataFile.open("r")

write("The position is " + dataFile.getPosition() + "
")
write("The next character is " + dataFile.read(1) + "
")
write("The new position is " + dataFile.getPosition() + "
")

dataFile.close()

This example displays the following information:

The position is 0
The next character is H
The new position is 1

Example 2. This example uses setPosition to position the pointer one byte
from the end of the eleven-byte file, resulting in a pointer position of offset 10.

dataFile = new File("c:\data\info.txt")
dataFile.open("r")

dataFile.setPosition(-1,2)
write("The position is " + dataFile.getPosition() + "
")
write("The next character is " + dataFile.read(1) + "
")

dataFile.close()

This example displays the following information:

The position is 10
The next character is d

Example 3. You can position the pointer beyond the end of the file and still
evaluate getPosition successfully. However, a call to eof indicates that the
pointer is beyond the end of the file.

dataFile.setPosition(1,2)
write("The position is " + dataFile.getPosition() + "
")
write("The value of eof is " + dataFile.eof() + "<P>")

This example displays the following information:

The position is 12
The value of eof is true

See also File.eof , File.open , File.setPosition
Chapter 12, Utilities 639

File
open

Opens a file on the server.

Syntax open("mode")

Parameters

Description Use the open method to open a file on the server before you read from it or
write to it. If the file is already open, the method fails and has no effect. The
open method returns true if it is successful; otherwise, it returns false.

The mode parameter is a string that specifies whether to open the file to read,
write, or append data. You can optionally use the b parameter anytime you
specify the mode. If you do so, the JavaScript runtime engine on the server
opens the file as a binary file. If you do not use the b parameter, the runtime
engine opens the file as a text file. The b parameter is available only on
Windows platforms.

The possible values for mode are as follows:

• r[b] opens a file for reading. If the file exists, the method succeeds and
returns true; otherwise, the method fails and returns false.

• w[b] opens a file for writing. If the file does not already exist, it is created;
otherwise, it is overwritten. This method always succeeds and returns true.

• a[b] opens a file for appending (writing at the end of the file). If the file
does not already exist, it is created. This method always succeeds and
returns true.

• r+[b] opens a file for reading and writing. If the file exists, the method
succeeds and returns true; otherwise, the method fails and returns false.
Reading and writing commence at the beginning of the file. When writing,
characters at the beginning of the file are overwritten.

Method of File

Implemented in LiveWire 1.0

mode A string specifying whether to open the file to read, write, or
append, according to the list below.
640 JavaScript Reference

File
• w+[b] opens a file for reading and writing. If the file does not already exist,
it is created; otherwise, it is overwritten. This method always succeeds and
returns true.

• a+[b] opens a file for reading and appending. If the file does not already
exist, it is created. This method always succeeds and returns true. Reading
and appending commence at the end of the file.

When your application is finished with a file, you should close the file by
calling the close method.

Examples Example 1. The following example opens the file info.txt so an application
can write information to it. If info.txt does not already exist, the open
method creates it; otherwise, the open method overwrites it. The close method
closes the file after the writeData function is completed.

userInfo = new File("c:\data\info.txt")
userInfo.open("w")
writeData()
userInfo.close()

Example 2. The following example opens a binary file so an application can
read data from it. The application uses an if statement to take different actions
depending on whether the open statement finds the specified file.

entryGraphic = new File("c:\data\splash.gif")
if (entryGraphic.open("rb") == true) {

displayProcedure()
}

else {
errorProcedure()
}

entryGraphic.close()

See also File.close

read

Reads data from a file into a string.

Syntax read(count)

Method of File

Implemented in LiveWire 1.0
Chapter 12, Utilities 641

File
Parameters

Description The read method reads the specified number of characters from a file, starting
from the current position of the pointer. If you attempt to read more characters
than the file contains, the method reads as many characters as possible. This
method moves the pointer the number of characters specified by the count
parameter. See the File object for a description of the pointer.

The read method returns the characters it reads as a string.

Use the read method to read information from a text file; use the readByte
method to read data from a binary file.

Examples The following example references the file info.txt , which contains the string
“Hello World.” The first read method starts from the beginning of the file and
reads the character “H.” The second read method starts from offset six and
reads the characters “World.”

dataFile = new File("c:\data\info.txt")
dataFile.open("r")

write("The next character is " + dataFile.read(1) + "
")
dataFile.setPosition(6)
write("The next five characters are " + dataFile.read(5) + "
")

dataFile.close()

This example displays the following information:

The next character is H
The next five characters are World

See also File.readByte , File.readln , File.write

readByte

Reads the next byte from an open file and returns its numeric value.

Syntax readByte()

Parameters None.

count An integer specifying the number of characters to read.

Method of File

Implemented in LiveWire 1.0
642 JavaScript Reference

File
Description The readByte method reads the next byte from a file, starting from the current
position of the pointer. This method moves the pointer one byte. See the File
object for a description of the pointer.

The readByte method returns the byte it reads as a number. If the pointer is at
the end of the file when you issue readByte , the method returns -1.

Use the readByte method to read information from a binary file. You can use
the readByte method to read from a text file, but you must use the
byteToString method to convert the value to a string. Generally it is better to
use the read method to read information from a text file.

You can use the writeByte method to write data read by the readByte
method to a file.

Examples This example creates a copy of a binary file. In this example, a while loop
executes until the pointer is positioned past the end of the file. While the
pointer is not positioned past the end of the file, the readByte method reads
the current byte from the source file, and the writeByte method writes it to
the target file. The last readByte method positions the pointer past the end of
the file, ending the while loop.

// Create the source File object
source = new File("c:\data\source.gif")

// If the source file opens successfully, create a target file
if (source.open("rb")) {

target = new File("c:\data\target.gif")
target.open("wb")

// Copy the source file to the target
while (!source.eof()) {

data = source.readByte()
target.writeByte(data);

}
source.close();

}
target.close()

See also File.read , File.readln , File.writeByte

readln

Reads the current line from an open file and returns it as a string.

Method of File
Chapter 12, Utilities 643

File
Syntax readln()

Parameters None

Description The readln method reads the current line of characters from a file, starting
from the current position of the pointer. If you attempt to read more characters
than the file contains, the method reads as many characters as possible. This
method moves the pointer to the beginning of the next line. See the File
object for a description of the pointer.

The readln method returns the characters it reads as a string.

The line separator characters (“\r ” and “\n ” on Windows platforms and “\n ” on
UNIX platforms) are not included in the string that the readln method returns.
The \r character is skipped; \n determines the actual end of the line.

Use the readln method to read information from a text file; use the readByte
method to read data from a binary file. You can use the writeln method to
write data read by the readln method to a file.

Examples See File.eof

See also File.read , File.readByte , File.writeln

setPosition

Positions a pointer in an open file.

Syntax setPosition(position, reference)

Parameters

Description Use the setPosition method to reposition the pointer in a file. See the File
object for a description of the pointer.

Implemented in LiveWire 1.0

Method of File

Implemented in LiveWire 1.0

position An integer indicating where to position the pointer.

reference (Optional) An integer that indicates a reference point, according to the list
below.
644 JavaScript Reference

File
The position argument is a positive or negative integer that moves the pointer
the specified number of bytes relative to the reference argument. Position 0
represents the beginning of a file. The end of a file is indicated by
fileObjectName.getLength() .

The optional reference argument is one of the following values, indicating the
reference point for position :

• 0: relative to beginning of file.

• 1: relative to current position.

• 2: relative to end of file.

• Other (or unspecified): relative to beginning of file.

The setPosition method returns true if it is successful; otherwise, it returns
false.

Examples The following examples refer to the file info.txt , which contains the string
“Hello World.” The length of info.txt is 11 bytes. The first example moves
the pointer from the beginning of the file, and the second example moves the
pointer to the same location by navigating relative to the end of the file. Both
examples display the following information:

The position is 10
The next character is d

Example 1. This example moves the pointer from the beginning of the file to
offset 10. Because no value for reference is supplied, the JavaScript runtime
engine assumes it is 0.

dataFile = new File("c:\data\info.txt")
dataFile.open("r")

dataFile.setPosition(10)
write("The position is " + dataFile.getPosition() + "
")
write("The next character is " + dataFile.read(1) + "<P>")

dataFile.close()

Example 2. This example moves the pointer from the end of the file to offset
10.

dataFile = new File("c:\data\info.txt")
dataFile.open("r")

dataFile.setPosition(-1,2)
write("The position is " + dataFile.getPosition() + "
")
write("The next character is " + dataFile.read(1) + "<P>")

dataFile.close()
Chapter 12, Utilities 645

File
See also File.eof , File.getPosition , File.open

stringToByte

Converts the first character of a string into a number that represents a byte.

Syntax stringToByte(string)

Parameters

Description Use the stringToByte and byteToString methods to convert data between
binary and ASCII formats. The stringToByte method converts the first
character of its string argument into a number that represents a byte.

Because stringToByte is a static method of File , you always use it as
File.stringToByte() , rather than as a method of a File object you created.

If this method succeeds, it returns the numeric value of the first character of the
input string; if it fails, it returns 0.

Examples In the following example, the stringToByte method is passed “Hello” as an
input argument. The method converts the first character, “H,” into a numeric
value representing a byte.

write("The stringToByte value of Hello = " +
File.stringToByte("Hello") + "
")

write("Returning that value to byteToString = " +
File.byteToString(File.stringToByte("Hello")) + "<P>")

The previous example displays the following information:

The stringToByte value of Hello = 72
Returning that value to byteToString = H

See also File.byteToString

Method of File

Static

Implemented in LiveWire 1.0

string A JavaScript string.
646 JavaScript Reference

File
write

Writes data from a string to a file on the server.

Syntax write(string)

Parameters

Description The write method writes the string specified as string to the file specified as
fileObjectName . This method returns true if it is successful; otherwise, it
returns false.

Use the write method to write data to a text file; use the writeByte method to
write data to a binary file. You can use the read method to read data from a file
to a string for use with the write method.

Do not confuse the write method of the File object with the write function.
The write function outputs data to the client browser; the write method
outputs data to a physical file on the server.

Examples This example creates a copy of a text file, one character at a time. In this
example, a while loop executes until the pointer is positioned past the end of
the file. While the pointer is not positioned past the end of the file, the read
method reads the current character from the source file, and the write method
writes it to the target file. The last read method positions the pointer past the
end of the file, ending the while loop. See the File object for a description of
the pointer.

// Create the source File object
source = new File("c:\data\source.txt")

// If the source file opens successfully, create a target file
if (source.open("r")) {

target = new File("c:\data\target.txt")
target.open("w")

// Copy the source file to the target
while (!source.eof()) {

data = source.read(1)
target.write(data);

}

Method of File

Implemented in LiveWire 1.0

string A JavaScript string.
Chapter 12, Utilities 647

File
source.close();
}

target.flush()
target.close()

See also File.flush , File.read , File.writeByte , File.writeln

writeByte

Writes a byte of data to a binary file on the server.

Syntax writeByte(number)

Parameters

Description The writeByte method writes a byte that is specified as number to a file that is
specified as fileObjectName . This method returns true if it is successful;
otherwise, it returns false.

Use the writeByte method to write data to a binary file; use the write method
to write data to a text file. You can use the readByte method to read bytes of
data from a file to numeric values for use with the writeByte method.

Examples See the example for the readByte method.

See also File.flush , File.readByte , File.write , File.writeln

writeln

Writes a string and a carriage return to a file on the server.

Syntax writeln(string)

Method of File

Implemented in LiveWire 1.0

number A number that specifies a byte of data.

Method of File

Implemented in LiveWire 1.0
648 JavaScript Reference

File
Parameters

Description The writeln method writes the string specified as string to the file specified
as fileObjectName . Each string is followed by the carriage return/line feed
character “\n ” (“\r\n ” on Windows platforms). This method returns true if the
write is successful; otherwise, it returns false.

Use the writeln method to write data to a text file; use the writeByte method
to write data to a binary file. You can use the readln method to read data from
a file to a string for use with the writeln method.

Examples This example creates a copy of a text file, one line at a time. In this example, a
while loop executes until the pointer is positioned past the end of the file.
While the pointer is not positioned past the end of the file, the readln method
reads the current line from the source file, and the writeln method writes it to
the target file. The last readln method positions the pointer past the end of the
file, ending the while loop. See the File object for a description of the
pointer.

// Create the source File object
source = new File("c:\data\source.txt")

// If the source file opens successfully, create a target file
if (source.open("r")) {

target = new File("c:\data\target.txt")
target.open("w")

// Copy the source file to the target
while (!source.eof()) {

data = source.readln()
target.writeln(data);

}
source.close();

}
target.close()

Note that the readln method ignores the carriage return/line feed characters
when it reads a line from a file. The writeln method appends these characters
to the string that it writes.

See also File.flush , File.readln , File.write , File.writeByte

string A JavaScript string.
Chapter 12, Utilities 649

SendMail
SendMail
Sends an email message.

The To and From attributes are required. All other properties are optional.

Created by The SendMail constructor:

new SendMail();

Parameters None.

Description Whatever properties you specify for the SendMail object are sent in the header
of the mail message.

The SendMail object allows you to send either simple text-only mail messages
or complex MIME-compliant mail or add attachments to your message. To send
a MIME message, set the Content-Type property to the MIME type of the
message.

You can use the prototype property of the SendMail object to add a property
to all SendMail instances. If you do so, that addition applies to all SendMail
objects running in all applications on your server, not just in the single
application that made the change. This allows you to expand the capabilities of
this object for your entire server.

Property
Summary

Server-side object

Implemented in Netscape Server 3.0

Property Descriptiohn

Bcc Comma-delimited list of recipients of the message whose names
should not be visible in the message.

Body Text of the message.

Cc Comma-delimited list of additional recipients of the message.

Errorsto Address to which to send errors concerning the message. Defaults
to the sender’s address.

From User name of the person sending the message.

Organizatio
n

Organization information.
650 JavaScript Reference

SendMail
Method Summary

Examples Example 1: The following script sends mail to vpg and gwp, copying jaym,
with the specified subject and body for the message:

<server>
SMName = new SendMail();
SMName.To = "vpg@co1.com, gwp@co2.com"
SMName.From = "me@myco.com"
SMName.Cc = "jaym@hisco.com"
SMName.Subject = "The State of the Universe"
SMName.Body = "The universe, contrary to what you may have heard, is in
none too shabby shape. Not to worry! --me"
SMName.send()
</server>

Example 2: The following example sends an image in a GIF file:

sm = new SendMail();
sm.To = "satish";
sm.From = "satish@netscape.com";
sm.Smtpserver = "fen.mcom.com";
sm["Errors-to"] = "satish";
sm["Content-type"] = "image/gif";
sm["Content-Transfer-Encoding"] = "base64";
file = new File("/u/satish/LiveWire/mail/banner.gif");

prototype Allows the addition of properties to a SendMail object.

Replyto User name to which replies to the message should be sent.
Defaults to the sender’s address.

Smtpserver Mail (SMTP) server name. Defaults to the value specified through
the setting in the Administration server.

Subject Subject of the message.

To Comma-delimited list of primary recipients of the message.

Property Descriptiohn

Method Descriptiohn

errorCode Returns an integer error code associated with sending this
message.

errorMessage Returns a string associated with sending this message.

send Sends the mail message represented by this object.
Chapter 12, Utilities 651

SendMail
openFlag = file.open("r");
if (openFlag) {

len = file.getLength();
str = file.read(len);
sm.Body = str;

}
sm.send();

Example 3: The following example sends a multipart message:

sm = new SendMail();
sm.To = "chandra@cs.uiowa.edu, satish@netscape.com";
sm.From = "satish@netscape.com";
sm.Smtpserver = "fen.mcom.com";
sm.Organization = "Netscape Comm Corp";
sm["Content-type"] = "multipart/mixed; boundary=\"------------
8B3F7BA67B67C1DDE6C25D04\"";
file = new File("/u/satish/LiveWire/mail/mime");
openFlag = file.open("r");
if (openFlag) {

len = file.getLength();
str = file.read(len);
sm.Body = str;

}
sm.send();

The file mime has HTML text and an Microsoft Word document separated by the
specified boundary. The resulting message appears as HTML text followed by
the Microsoft Word attachment.

Properties

Bcc

Comma-delimited list of recipients of the message whose names should not be
visible in the message.

Property of SendMail

Implemented in Netscape Server 3.0
652 JavaScript Reference

SendMail
Body

Text of the message.

Cc

Comma-delimited list of additional recipients of the message.

Errorsto

Address to which to send errors concerning the message. Defaults to the
sender’s address.

From

User name of the person sending the message.

Organization

Organization information.

Property of SendMail

Implemented in Netscape Server 3.0

Property of SendMail

Implemented in Netscape Server 3.0

Property of SendMail

Implemented in Netscape Server 3.0

Property of SendMail

Implemented in Netscape Server 3.0

Property of SendMail

Implemented in Netscape Server 3.0
Chapter 12, Utilities 653

SendMail
prototype

Represents the prototype for this class. You can use the prototype to add
properties or methods to all instances of a class. For information on prototypes,
see Function.prototype .

Replyto

User name to which replies to the message should be sent. Defaults to the
sender’s address.

Smtpserver

Mail (SMTP) server name. Defaults to the value specified through the setting in
the Administration server.

Subject

Subject of the message.

To

Comma-delimited list of primary recipients of the message.

Property of SendMail

Implemented in LiveWire 1.0

Property of SendMail

Implemented in Netscape Server 3.0

Property of SendMail

Implemented in Netscape Server 3.0

Property of SendMail

Implemented in Netscape Server 3.0

Property of SendMail

Implemented in Netscape Server 3.0
654 JavaScript Reference

SendMail
Methods

errorCode

Returns an integer error code associated with sending this message.

Syntax public errorCode();

Returns The possible return values and their meanings are as follows:

errorMessage

Returns a string associated with sending this message.

Syntax public errorMessage();

Returns An error string.

send

Sends the mail message represented by this object.

Method of SendMail

Implemented in Netscape Server 3.0

0 Successful send.

1 SMTP server not specified.

2 Specified mail server is down or doesn’t exist.

3 At least one receiver’s address must be specified to send the message.

4 Sender’s address must be specified to send the message.

5 Mail connection problem; data not sent.

Method of SendMail

Implemented in Netscape Server 3.0

Method of SendMail

Implemented in Netscape Server 3.0
Chapter 12, Utilities 655

SendMail
Syntax public send ();

Returns This method returns a Boolean value to indicate whether or not the mail was
successfully sent. If the mail was not successfully sent, you can use the
errorMessage and errorCode methods to determine the nature of the error.

This method returns a string indicating the nature of the error that occurred
sending the message.
656 JavaScript Reference

C h a p t e r

13
Global Functions
This chapter contains all JavaScript functions not associated with any object.

Table 13.1 summarizes these functions.

Table 13.1 Global functions

Function Description

addClient Appends client information to URLs.

addResponseHeader Adds new information to the response header sent
to the client.

blob Assigns BLOb data to a column in a cursor.

callC Calls a native function.

debug Displays values of expressions in the trace window
or frame.

deleteResponseHeader Removes information from the header of the
response sent to the client.

escape Returns the hexadecimal encoding of an argument
in the ISO Latin-1 character set; used to create
strings to add to a URL.

eval Evaluates a string of JavaScript code without
reference to a particular object.

flush Flushes the output buffer.
Chapter 13, Global Functions 657

getOptionValue Gets values of individual options in an HTML
SELECT form element.

getOptionValueCount Gets the number of options in an HTML SELECT
form element.

isNaN Evaluates an argument to determine if it is not a
number.

Number Converts an object to a number.

parseFloat Parses a string argument and returns a floating-point
number.

parseInt Parses a string argument and returns an integer.

redirect Redirects the client to the specified URL.

registerCFunction Registers a native function for use in server-side
JavaScript.

ssjs_generateClientID Returns an identifier you can use to uniquely specify
the client object.

ssjs_getCGIVariable Returns the value of the specified environment
variable set in the server process, including some
CGI variables.

ssjs_getClientID Returns the identifier for the client object used by
some of JavaScript’s client-maintenance techniques.

String Converts an object to a string.

taint Adds tainting to a data element or script.

unescape Returns the ASCII string for the specified value; used
in parsing a string added to a URL.

untaint Removes tainting from a data element or script.

write Adds statements to the client-side HTML page being
generated.

Table 13.1 Global functions

Function Description
658 JavaScript Reference

addClient
addClient
Adds client object property values to a dynamically generated URL or the URL
used with the redirect function.

Syntax addClient(URL)

Parameters

Description The addClient function is a top-level server-side JavaScript function not
associated with any object.

Use addClient to preserve client object property values when you use
redirect or generate dynamic links. This is necessary if an application uses
client or server URL encoding to maintain the client object; it does no harm in
other cases. Since the client maintenance technique can be changed after the
application has been compiled, it is always safer to use addClient , even if you
do not anticipate using a URL encoding scheme.

See Writing Server-Side JavaScript Applications for information about using URL
encoding to maintain client properties.

Examples In the following example, addClient is used with the redirect function to
redirect a browser:

redirect(addClient("mypage.html"))

In the following example, addClient preserves client object property values
when a link is dynamically generated:

Jump to new page

See also redirect

Server-side function

Implemented in LiveWire 1.0

URL A string representing a URL
Chapter 13, Global Functions 659

addResponseHeader
addResponseHeader
Adds new information to the response header sent to the client.

Syntax addResponseHeader(field, value)

Parameters

Description You can use the addResponseHeader function to add information to the
header of the response you send to the client.

For example, if the response you send to the client uses a custom content type,
you should encode this content type in the response header. The JavaScript
runtime engine automatically adds the default content type (text/html) to the
response header. If you want a custom header, you must first remove the old
default content type from the header and then add the new one. If your
response uses royalairways-format as a custom content type, you would
specify it this way:

deleteResponseHeader("content-type");
addResponseHeader("content-type","royalairways-format");

You can use the addResponseHeader function to add any other information
you want to the response header.

Remember that the header is sent with the first part of the response. Therefore,
you should call these functions early in the script on each page. In particular,
you should ensure that the response header is set before any of these happen:

• The runtime engine generates 64KB of content for the HTML page (it
automatically flushes the output buffer at this point).

• You call the flush function to clear the output buffer.

• You call the redirect function to change client requests.

See also deleteResponseHeader

Server-side function

Implemented in Netscape Server 3.0

field A field to add to the response header.

value The information to specify for that field.
660 JavaScript Reference

blob
blob
Assigns BLOb data to a column in a cursor.

Syntax blob (path)

Parameters

Returns A blob object.

Description Use this function with an updatable cursor to insert or update a row containing
BLOb data. To insert or update a row using SQL and the execute method, use
the syntax supported by your database vendor.

On DB2, blobs are limited to 32 KBytes.

Remember that back slash ("\") is the escape character in JavaScript. For this
reason, in NT filenames you must either use 2 backslashes or a forward slash.

Example The following statements update BLOb data from the specified GIF files in
columns PHOTO and OFFICE of the current row of the EMPLOYEE table.

// Create a cursor
cursor = database.cursor("SELECT * FROM customer WHERE

customer.ID = " + request.customerID

// Position the pointer on the row
cursor.next()

// Assign the blob data
cursor.photo = blob("c:/customer/photos/myphoto.gif")
cursor.office = blob("c:/customer/photos/myoffice.gif")

// And update the row
cursor.updateRow("employee")

Server-side function

Implemented in LiveWire 1.0

path A string representing the name of a file containing BLOb data. This string
must be an absolute pathname.
Chapter 13, Global Functions 661

callC
callC
Calls an external function and returns the value that the external function
returns.

Syntax callC(JSFunctionName, arg1,..., arg N)

Parameters

Description The callC function is a top-level server-side JavaScript function that is not
associated with any object.

The callC function returns the string value that the external function returns;
callC can only return string values.

Examples The following example assigns a value to the variable isRegistered according
to whether the attempt to register the external function echoCCallArguments
succeeds or fails. If isRegistered is true, the callC function executes.

var isRegistered =
registerCFunction("echoCCallArguments",

"c:/mypath/mystuff.dll",
"mystuff_EchoCCallArguments")

if (isRegistered == true) {
var returnValue =
callC("echoCCallArguments", "first arg", 42, true, "last arg")
write(returnValue)

}

See also registerCFunction

Server-side function

Implemented in LiveWire 1.0

JSFunctionName The name of the function as it is identified with
RegisterCFunction .

arg1...arg N A comma-separated list of arguments to the external function. The
arguments can be any JavaScript values: strings, numbers, or
Boolean values. The number of arguments must match the number
of arguments required by the external function.
662 JavaScript Reference

debug
debug
Displays a JavaScript expression in the trace facility.

Syntax debug(expression)

Parameters

Description The debug function is a top-level server-side JavaScript function that is not
associated with any object.

Use this function to display the value of an expression for debugging purposes.
The value is displayed in the trace facility of the Application Manager following
the brief description “Debug message:”.

Examples The following example displays the value of the variable data :

debug("The final value of data is " + data)

deleteResponseHeader
Removes information from the header of the response sent to the client.

Syntax deleteResponseHeader(field)

Parameters

Description You can use the deleteResponseHeader function to remove information from
the header of the response you send to the client. The most frequent use of this
function is to remove the default content-type information before adding your
own content-type information with addResponseHeader .

Server-side function

Implemented in LiveWire 1.0

expression Any valid JavaScript expression.

Server-side function

Implemented in Netscape Server 3.0

field A field to remove from the response header.
Chapter 13, Global Functions 663

escape
For more information, see addResponseHeader .

escape
Returns the hexadecimal encoding of an argument in the ISO-Latin-1 character
set.

Syntax escape("string")

Parameters

Description The escape function is a top-level JavaScript function that is not associated
with any object. Use the escape and unescape functions to add property
values manually to a URL.

The escape function encodes special characters in the specified string and
returns the new string. It encodes spaces, punctuation, and any other character
that is not an ASCII alphanumeric character, with the exception of these
characters:

* @ - _ + . /

Examples Example 1. The following example returns "%26" :

escape("&")

Example 2. This statement

escape("The_rain. In Spain, Ma’am")

returns

"The_rain.%20In%20Spain%2C%20Ma%92am":

Example 3. In the following example, the value of the variable theValue is
encoded as a hexadecimal string and passed on to the request object when a
user clicks the link:

Click Here

Core function

Implemented in Navigator 2.0, LiveWire 1.0

string A string in the ISO-Latin-1 character set.
664 JavaScript Reference

eval
See also unescape

eval
Evaluates a string of JavaScript code without reference to a particular object.

Syntax eval(string)

Parameters

Description The argument of the eval function is a string. If the string represents an
expression, eval evaluates the expression. If the argument represents one or
more JavaScript statements, eval performs the statements. Do not call eval to
evaluate an arithmetic expression; JavaScript evaluates arithmetic expressions
automatically.

If you construct an arithmetic expression as a string, you can use eval to
evaluate it at a later time. For example, suppose you have a variable x . You can
postpone evaluation of an expression involving x by assigning the string value
of the expression, say "3 * x + 2" , to a variable, and then calling eval at a
later point in your script.

eval is also a method of all objects. This method is described for the Object
class.

Examples The following examples display output using document.write . In server-side
JavaScript, you can display the same output by calling the write function
instead of using document.write .

Example 1. Both of the write statements below display 42. The first evaluates
the string "x + y + 1" ; the second evaluates the string "42" .

var x = 2
var y = 39
var z = "42"

Core function

Implemented in Navigator 2.0

string A string representing a JavaScript expression, statement, or sequence of
statements. The expression can include variables and properties of existing
objects.
Chapter 13, Global Functions 665

eval
document.write(eval("x + y + 1"), "
")
document.write(eval(z), "
")

Example 2. In the following example, the getFieldName(n) function returns
the name of the specified form element as a string. The first statement assigns
the string value of the third form element to the variable field . The second
statement uses eval to display the value of the form element.

var field = getFieldName(3)
document.write("The field named ", field, " has value of ",

eval(field + ".value"))

Example 3. The following example uses eval to evaluate the string str . This
string consists of JavaScript statements that open an Alert dialog box and assign
z a value of 42 if x is five, and assigns 0 to z otherwise. When the second
statement is executed, eval will cause these statements to be performed, and it
will also evaluate the set of statements and return the value that is assigned to
z .

var str = "if (x == 5) {alert('z is 42'); z = 42;} else z = 0; "
document.write("<P>z is ", eval(str))

Example 4. In the following example, the setValue function uses eval to
assign the value of the variable newValue to the text field textObject :

function setValue (textObject, newValue) {
eval ("document.forms[0]." + textObject + ".value") = newValue

}

Example 5. The following example creates breed as a property of the object
myDog, and also as a variable. The first write statement uses eval('breed')
without specifying an object; the string "breed" is evaluated without regard to
any object, and the write method displays "Shepherd" , which is the value of
the breed variable. The second write statement uses myDog.eval('breed')
which specifies the object myDog; the string "breed" is evaluated with regard
to the myDog object, and the write method displays "Lab" , which is the value
of the breed property of the myDog object.

function Dog(name,breed,color) {
this.name=name
this.breed=breed
this.color=color

}
myDog = new Dog("Gabby")
myDog.breed="Lab"
var breed='Shepherd'
document.write("<P>" + eval('breed'))
document.write("
" + myDog.eval('breed'))
666 JavaScript Reference

flush
See also Object.eval method

flush
Sends data from the internal buffer to the client.

Syntax flush()

Parameters None.

Description To improve performance, JavaScript buffers the HTML page it constructs. The
flush function immediately sends data from the internal buffer to the client. If
you do not explicitly call the flush function, JavaScript sends data to the client
after each 64KB of content in the constructed HTML page.

Use the flush function to control when data is sent to the client. For example,
call the flush function before an operation that creates a delay, such as a
database query. If a database query retrieves a large number of rows, you can
flush the buffer after retrieving a small number of rows to prevent long delays
in displaying data.

Because the flush function updates the client’s cookie file as part of the HTTP
header, you should perform any changes to the client object before flushing
the buffer, if you are using client cookie to maintain the client object. For
more information, see Writing Server-Side JavaScript Applications.

Do not confuse the flush method of the File object with the top-level flush
function. The flush function is a top-level server-side JavaScript function that
is not associated with any object.

Examples The following example iterates through a text file and outputs each line in the
file, preceded by a line number and five spaces. The flush function then
causes the client to display the output.

while (!In.eof()) {
AscLine = In.readln();
if (!In.eof())

write(LPad(LineCount + ": ", 5), AscLine, "\n");
LineCount++;

Server-side function

Implemented in LiveWire 1.0
Chapter 13, Global Functions 667

getOptionValue
flush();
}

See also write

getOptionValue
Returns the text of a selected OPTION in a SELECT form element.

Syntax getOptionValue(name, index)

Parameters

Returns A string containing the text for the selected option, as specified by the
associated OPTION tag.

Description The getOptionValue function is a top-level server-side JavaScript function not
associated with any object. It corresponds to the Option.text property
available to client-side JavaScript.

The SELECT tag allows multiple values to be associated with a single form
element, with the MULTIPLE attribute. If your application requires select lists
that allow multiple selected options, you use the getOptionValue function to
get the values of selected options in server-side JavaScript.

Examples Suppose you have the following form element:

<SELECT NAME="what-to-wear" MULTIPLE SIZE=8>
<OPTION SELECTED>Jeans
<OPTION>Wool Sweater
<OPTION SELECTED>Sweatshirt
<OPTION SELECTED>Socks
<OPTION>Leather Jacket
<OPTION>Boots
<OPTION>Running Shoes
<OPTION>Cape

</SELECT>

Server-side function

Implemented in LiveWire 1.0

name A name specified by the NAME attribute of the SELECT tag

index Zero-based ordinal index of the selected option.
668 JavaScript Reference

getOptionValueCount
You could process the input from this select list in server-side JavaScript as
follows:

<SERVER>
var loopIndex = 0
var loopCount = getOptionValueCount("what-to-wear") // 3 by default
while (loopIndex < loopCount) {

var optionValue = getOptionValue("what-to-wear",loopIndex)
write("
Item #" + loopIndex + ": " + optionValue + "\n")
loopIndex++

}
</SERVER>

If the user kept the default selections, this script would return

Item #1: Jeans
Item #3: Sweatshirt
Item #4: Socks

See also getOptionValueCount

getOptionValueCount
Returns the number of options selected by the user in a SELECT form element.

Syntax getOptionValueCount(name)

Parameters

Description The getOptionValueCount function is a top-level server-side JavaScript
function not associated with any object.

Use this function with getOptionValue to process user input from SELECT
form elements that allow multiple selections.

Examples See the example for getOptionValue .

See also getOptionValue

Server-side function

Implemented in LiveWire 1.0

name Specified by the NAME attribute of the SELECT tag.
Chapter 13, Global Functions 669

isNaN
isNaN
Evaluates an argument to determine if it is not a number.

Syntax isNaN(testValue)

Parameters

Description isNaN is a built-in JavaScript function. It is not a method associated with any
object, but is part of the language itself.

On platforms that support NaN, the parseFloat and parseInt functions
return "NaN" when they evaluate a value that is not a number. isNaN returns
true if passed "NaN" , and false otherwise.

Examples The following example evaluates floatValue to determine if it is a number
and then calls a procedure accordingly:

floatValue=parseFloat(toFloat)

if (isNaN(floatValue)) {
notFloat()

} else {
isFloat()

}

See also Number.NaN , parseFloat , parseInt

Number
Converts the specified object to a number.

Syntax Number(obj)

Core function

Implemented in Navigator 2.0: Unix only
Navigator 3.0, LiveWire 1.0: all platforms

testValue The value you want to evaluate.

Core function

Implemented in Navigator 4.0, Netscape Server 3.0
670 JavaScript Reference

parseFloat
Parameter

Description When the object is a Date object, Number returns a value in milliseconds
measured from 01 January, 1970 UTC (GMT), positive after this date, negative
before.

If obj is a string that does not contain a well-formed numeric literal, Number
returns NaN.

Example The following example converts the Date object to a numerical value:

<SCRIPT>
d = new Date ("December 17, 1995 03:24:00");
document.write (Number(d) + "
");
</SCRIPT>

This prints "819199440000."

See also Number

parseFloat
Parses a string argument and returns a floating point number.

Syntax parseFloat(string)

Parameters

Description The parseFloat function is a built-in JavaScript function.

obj An object

Core function

Implemented in Navigator 2.0: If the first character of the string specified in
parseFloat(string) cannot be converted to a number, returns
"NaN" on Solaris and Irix and 0 on all other platforms.
Navigator 3.0, LiveWire 1.0: Returns "NaN" on all platforms if the
first character of the string specified in parseFloat(string) cannot
be converted to a number.

string A string that represents the value you want to parse.
Chapter 13, Global Functions 671

parseInt
parseFloat parses its argument, a string, and returns a floating point number.
If it encounters a character other than a sign (+ or -), numeral (0-9), a decimal
point, or an exponent, then it returns the value up to that point and ignores that
character and all succeeding characters.

If the first character cannot be converted to a number, parseFloat returns
"NaN" .

For arithmetic purposes, the "NaN" value is not a number in any radix. You can
call the isNaN function to determine if the result of parseFloat is "NaN" . If
"NaN" is passed on to arithmetic operations, the operation results will also be
"NaN" .

Examples The following examples all return 3.14:

parseFloat("3.14")
parseFloat("314e-2")
parseFloat("0.0314E+2")
var x = "3.14"
parseFloat(x)

The following example returns "NaN" :

parseFloat("FF2")

See also isNaN , parseInt

parseInt
Parses a string argument and returns an integer of the specified radix or base.

Syntax parseInt(string,radix)

Parameters

Core function

Implemented in Navigator 2.0: If the first character of the string specified in
parseInt(string) cannot be converted to a number, returns "NaN"
on Solaris and Irix and 0 on all other platforms.
Navigator 3.0, LiveWire 2.0: Returns "NaN" on all platforms if the
first character of the string specified in parseInt(string) cannot be
converted to a number.

string A string that represents the value you want to parse.
672 JavaScript Reference

parseInt
Description The parseInt function is a built-in JavaScript function.

The parseInt function parses its first argument, a string, and attempts to return
an integer of the specified radix (base). For example, a radix of 10 indicates to
convert to a decimal number, 8 octal, 16 hexadecimal, and so on. For radixes
above 10, the letters of the alphabet indicate numerals greater than 9. For
example, for hexadecimal numbers (base 16), A through F are used.

If parseInt encounters a character that is not a numeral in the specified radix,
it ignores it and all succeeding characters and returns the integer value parsed
up to that point. parseInt truncates numbers to integer values.

If the radix is not specified or is specified as 0, JavaScript assumes the
following:

• If the input string begins with "0x" , the radix is 16 (hexadecimal).

• If the input string begins with "0" , the radix is eight (octal).

• If the input string begins with any other value, the radix is 10 (decimal).

If the first character cannot be converted to a number, parseInt returns "NaN" .

For arithmetic purposes, the "NaN" value is not a number in any radix. You can
call the isNaN function to determine if the result of parseInt is "NaN" . If
"NaN" is passed on to arithmetic operations, the operation results will also be
"NaN" .

Examples The following examples all return 15:

parseInt("F", 16)
parseInt("17", 8)
parseInt("15", 10)
parseInt(15.99, 10)
parseInt("FXX123", 16)
parseInt("1111", 2)
parseInt("15*3", 10)

The following examples all return "NaN" :

parseInt("Hello", 8)
parseInt("0x7", 10)
parseInt("FFF", 10)

radix (Optional) An integer that represents the radix of the return value.
Chapter 13, Global Functions 673

redirect
Even though the radix is specified differently, the following examples all return
17 because the input string begins with "0x" .

parseInt("0x11", 16)
parseInt("0x11", 0)
parseInt("0x11")

See also isNaN , parseFloat , Object.valueOf

redirect
Redirects the client to the specified URL.

Syntax redirect(location)

Parameters

Description The redirect function is a top-level server-side JavaScript function that is not
associated with any object.

The redirect function redirects the client browser to the URL specified by the
location parameter. The value of location can be relative or absolute.

When the client encounters a redirect function, it loads the specified page
immediately and discards the current page. The client does not execute or load
any HTML or script statements in the page following the redirect function.

You can use the addClient function to preserve client object property
values. See addClient for more information.

Examples The following example uses the redirect function to redirect a client browser:

redirect("http://www.royalairways.com/lw/apps/newhome.html")

The page displayed by the newhome.html link could contain content such as
the following:

<H1>New location</H1>
The URL you tried to access has been moved to:

Server-side function

Implemented in LiveWire 1.0

location The URL to which you want to redirect the client.
674 JavaScript Reference

registerCFunction

http://www.royalairways.com/lw/apps/index.html

<P>This notice will remain until 12/31/97.

See also addClient

registerCFunction
Registers an external function for use with a server-side JavaScript application.

Syntax registerCFunction(JSFunctionName, libraryPath,
externalFunctionName)

Parameters

Description registerCFunction is a top-level server-side JavaScript function that is not
associated with any object.

Use registerCFunction to make an external function available to a server-
side JavaScript application. The function can be written in any language, but
you must use C calling conventions.

To use an external function in a server-side JavaScript application, register the
function with registerCFunction , and then call it with the callC function.
Once an application registers a function, you can call the function any number
of times.

The registerCFunction function returns true if the external function is
registered successfully; otherwise, it returns false. For example,
registerCFunction can return false if the JavaScript runtime engine cannot
find either the library or the specified function inside the library.

Server-side function

Implemented in LiveWire 1.0

JSFunctionName The name of the function as it is called in JavaScript.

libraryPath The full filename and path of the library, using the conventions
of your operating system.

externalFunctionName The name of the function as it is defined in the library.
Chapter 13, Global Functions 675

ssjs_generateClientID
To use a backslash (\) character as a directory separator in the libraryPath
parameter, you must enter a double backslash (\\). The single backslash is a
reserved character.

Examples See the example for the callC function.

See also callC

ssjs_generateClientID
Returns a unique string you can use to uniquely specify the client object.

Syntax ssjs_generateClientID()

Parameters None.

Description This function is closely related to ssjs_getClientID . See the description of
that function for information on these functions and the differences between
them.

ssjs_getCGIVariable
Returns the value of the specified environment variable set in the server
process, including some CGI variables.

Syntax ssjs_getCGIVariable(varName)

Parameters

Server-side function

Implemented in Netscape Server 3.0

Server-side function

Implemented in Netscape Server 3.0

varName A string containing the name of the environment variable to retrieve.
676 JavaScript Reference

ssjs_getCGIVariable
Description ssjs_getCGIVariable lets you access the environment variables set in the
server process, including the CGI variables listed in Table 13.2.

Table 13.2 CGI variables accessible through ssjs_getCGIVariable

Variable Description

AUTH_TYPE The authorization type, if the request is protected by any
type of authorization. Netscape web servers support HTTP
basic access authorization. Example value: basic

HTTPS If security is active on the server, the value of this variable
is ON; otherwise, it is OFF. Example value: ON

HTTPS_KEYSIZE The number of bits in the session key used to encrypt the
session, if security is on. Example value: 128

HTTPS_SECRETKEYSIZE The number of bits used to generate the server’s private
key. Example value: 128

PATH_INFO Path information, as sent by the browser. Example value:
/cgivars/cgivars.html

PATH_TRANSLATED The actual system-specific pathname of the path contained
in PATH_INFO. Example value: /usr/ns-home/
myhttpd/js/samples/cgivars/cgivars.html

QUERY_STRING Information from the requesting HTML page; if “?” is
present, the information in the URL that comes after the
“?”. Example value: x=42

REMOTE_ADDR The IP address of the host that submitted the request.
Example value: 198.93.95.47

REMOTE_HOST If DNS is turned on for the server, the name of the host
that submitted the request; otherwise, its IP address.
Example value: www.netscape.com

REMOTE_USER The name of the local HTTP user of the web browser, if
HTTP access authorization has been activated for this URL.
Note that this is not a way to determine the user name of
any person accessing your program. Example value:
ksmith

REQUEST_METHOD The HTTP method associated with the request. An
application can use this to determine the proper response
to a request. Example value: GET

SCRIPT_NAME The pathname to this page, as it appears in the URL.
Example value: cgivars.html
Chapter 13, Global Functions 677

ssjs_getClientID
If you supply an argument that isn’t one of the CGI variables listed in n, the
runtime engine looks for an environment variable by that name in the server
environment. If found, the runtime engine returns the value; otherwise, it
returns null. For example, the following code assigns the value of the standard
CLASSPATH environment variable to the JavaScript variable classpath :

classpath = ssjs_getCGIVariable("CLASSPATH");

ssjs_getClientID
Returns the identifier for the client object used by some of JavaScript’s client-
maintenance techniques.

Syntax ssjs_getClientID()

Parameters None.

Description For some applications, you may want to store information specific to a client/
application pair in the project or server objects. In these situations, you
need a way to refer uniquely to the client/application pair. JavaScript provides
two functions for this purpose, ssjs_generateClientID and
ssjs_getClientID .

SERVER_NAME The hostname or IP address on which the JavaScript
application is running, as it appears in the URL. Example
value: piccolo.mcom.com

SERVER_PORT The TCP port on which the server is running. Example
value: 2020

SERVER_PROTOCOL The HTTP protocol level supported by the client’s
software. Example value: HTTP/1.0

SERVER_URL The URL that the user typed to access this server. Example
value: https://piccolo:2020

Table 13.2 CGI variables accessible through ssjs_getCGIVariable (Continued)

Variable Description

Server-side function

Implemented in Netscape Server 3.0
678 JavaScript Reference

String
Each time you call ssjs_generateClientID , the runtime engine returns a
new identifier. For this reason, if you use this function and want the identifier
to last longer than a single client request, you need to store the identifier,
possibly as a property of the client object.

If you use this function and store the ID in the client object, you may need to
be careful that an intruder cannot get access to that ID and hence to sensitive
information.

An alternative approach is to use the ssjs_getClientID function. If you use
one of the server-side maintenance techniques for the client object, the
JavaScript runtime engine generates and uses a identifier to access the
information for a particular client/application pair.

When you use these maintenance techniques, ssjs_getClientID returns the
identifier used by the runtime engine. Every time you call this function from a
particular client/application pair, you get the same identifier. Therefore, you do
not need to store the identifier returned by ssjs_getClientID . However, if
you use any of the other maintenance techniques, this function returns
“undefined”; if you use those techniques you must instead use the
ssjs_generateClientID function.

If you need an identifier and you’re using a server-side maintenance technique,
you probably should use the ssjs_getClientID function. If you use this
function, you do not need to store and track the identifier yourself; the runtime
engine does it for you. However, if you use a client-side maintenance
technique, you cannot use the ssjs_getClientID function; you must use the
ssjs_generateClientID function.

String
Converts the specified object to a string.

Syntax String(obj)

Parameter

Core function

Implemented in Navigator 4.0, Netscape Server 3.0

obj An object.
Chapter 13, Global Functions 679

taint
Description When the object is a Date object, String returns a string representation of the
date. Its format is: Thu Aug 18 04:37:43 Pacific Daylight Time 1983.

Example The following example converts the Date object to a readable string.

<SCRIPT>
D = new Date (430054663215);
document.write (String(D) +"
");
</SCRIPT>

This prints "Thu Aug 18 04:37:43 Pacific Daylight Time 1983."

See also String

taint
Adds tainting to a data element or script.

Syntax taint(dataElementName)

Parameters

Description Tainting prevents other scripts from passing information that should be secure
and private, such as directory structures or user session history. JavaScript
cannot pass tainted values on to any server without the end user's permission.

Use taint to mark data that otherwise is not tainted.

In some cases, control flow rather than data flow carries tainted information. In
these cases, taint is added to the script's window. You can add taint to the
script's window by calling taint with no arguments.

taint does not modify its argument; instead, it returns a marked copy of the
value, or, for objects, an unmarked reference to the value.

Examples The following statement adds taint to a property so that a script cannot send it
to another server without the end user's permission:

Core function

Implemented in Navigator 3.0; removed in Navigator 4.0

dataElementName (Optional) The property, variable, function, or object to taint. If
omitted, taint is added to the script itself.
680 JavaScript Reference

unescape
taintedStatus=taint(window.defaultStatus)
// taintedStatus now cannot be sent in a URL or form post without
// the end user's permission

See also navigator.taintEnabled , untaint

unescape
Returns the ASCII string for the specified value.

Syntax unescape(string)

Parameters

Description The string returned by the unescape function is a series of characters in the
ISO-Latin-1 character set. The unescape function is a top-level JavaScript
function not associated with any object. In server-side JavaScript, use this
function to decode name/value pairs in URLs.

Examples The following client-side example returns "&" :

unescape("%26")

The following client-side example returns "!#" :

unescape("%21%23")

In the following server-side example, val1 has been passed to the request
object as a hexadecimal value. The statement assigns the decoded value of
val1 to myValue .

myValue = unescape(request.val1)

See also escape

Core function

Implemented in Navigator 2.0

string A string containing characters in the form "%xx" , where xx is a 2-digit
hexadecimal number.
Chapter 13, Global Functions 681

untaint
untaint
Removes tainting from a data element or script.

Syntax untaint(dataElementName)

Parameters

Description Tainting prevents other scripts from passing information that should be secure
and private, such as directory structures or user session history. JavaScript
cannot pass tainted values on to any server without the end user's permission.

Use untaint to clear tainting that marks data that should not to be sent by
other scripts to different servers.

A script can untaint only data that originated in that script (that is, only data that
has the script's taint code or has the identity (null) taint code). If you use
untaint with a data element from another server's script (or any data that you
cannot untaint), untaint returns the data without change or error.

In some cases, control flow rather than data flow carries tainted information. In
these cases, taint is added to the script's window. You can remove taint from
the script's window by calling untaint with no arguments, if the window
contains taint only from the current window.

untaint does not modify its argument; instead, it returns an unmarked copy of
the value, or, for objects, an unmarked reference to the value.

Examples The following statement removes taint from a property so that a script can send
it to another server:

untaintedStatus=untaint(window.defaultStatus)
// untaintedStatus can now be sent in a URL or form post by other
// scripts

See also navigator.taintEnabled , taint

Core function

Implemented in Navigator 3.0; removed in Navigator 4.0

dataElementName (Optional) The property, variable, function, or object to remove
tainting from. If omitted, taint is removed from the script itself.
682 JavaScript Reference

write
write
Generates HTML based on an expression and sends it to the client.

Syntax write(expression)

Parameters

Description The write function causes server-side JavaScript to generate HTML that is sent
to the client. The client interprets this generated HTML as it would static HTML.
The server-side write function is similar to the client-side document.write
method.

To improve performance, the JavaScript engine on the server buffers the output
to be sent to the client and sends it in large blocks of at most 64 KBytes in size.
You can control when data are sent to the client by using the flush function.

The write function is a top-level server-side JavaScript function that is not
associated with any object. Do not confuse the write method of the File
object with the write function. The write function outputs data to the client;
the write method outputs data to a physical file on the server.

Examples In the following example, the write function is passed a string, concatenated
with a variable, concatenated with a BR tag:

write("The operation returned " + returnValue + "
")

If returnValue is 57, this example displays the following:

The operation returned 57

See also flush

Server-side function

Implemented in LiveWire 1.0

expression A valid JavaScript expression.
Chapter 13, Global Functions 683

write
684 JavaScript Reference

C h a p t e r

14
Java packages for LiveConnect
The LiveConnect facility allows your JavaScript application to work with Java
objects and for those Java objects to work with JavaScript objects.

LiveConnect provides two Java applet API packages for communicating with
JavaScript. These packages are netscape.javascript and
netscape.plugin.

The netscape.javascript applet package is available both on the client and
on the server and has the following classes:
• netscape.javascript.JSObject
• netscape.javascript.JSException

The netscape.plugin applet API package can be used only on the client. It
has the following class:
• netscape.plugin.Plugin

The following sections describe these classes and list their constructors and
methods.

netscape.javascript.JSObject
The public final class JSObject extends Object .
Chapter 14, Java packages for LiveConnect 685

netscape.javascript.JSObject
java.lang.Object
|
+----netscape.javascript.JSObject

JSObject allows Java to manipulate objects that are defined in JavaScript.
Values passed from Java to JavaScript are converted as follows:

• JSObject is converted to the original JavaScript object.

• Any other Java object is converted to a JavaScript wrapper, which can be
used to access methods and fields of the Java object. Converting this
wrapper to a string will call the toString method on the original object,
converting to a number will call the floatValue method if possible and fail
otherwise. Converting to a boolean will try to call the booleanValue
method in the same way.

• Java arrays are wrapped with a JavaScript object that understands
array.length and array[index] .

• A Java boolean is converted to a JavaScript boolean.

• Java byte, char, short, int, long, float, and double are converted to JavaScript
numbers.

Values passed from JavaScript to Java are converted as follows:

• Objects that are wrappers around Java objects are unwrapped.

• Other objects are wrapped with a JSObject .

• Strings, numbers, and booleans are converted to String, Float, and Boolean
objects respectively.

This means that all JavaScript values show up as some kind of
java.lang.Object in Java. In order to make much use of them, you will have
to cast them to the appropriate subclass of Object , as shown in the following
examples:

(String) window.getMember("name")
(JSObject) window.getMember("document")

Note If you call a Java method from JavaScript, this conversion happens
automatically—you can pass in “int” argument and it works.
686 JavaScript Reference

netscape.javascript.JSObject
Methods and static methods

The netscape.javascript.JSObject class has the following methods:

The netscape.javascript.JSObject class has the following static methods:

The following sections show the declaration and usage of these methods.

call

Method. Calls a JavaScript method. Equivalent to
“this.methodName(args[0], args[1], ...) ” in JavaScript.

Declaration public Object call(String methodName,
Object args[])

eval

Method. Evaluates a JavaScript expression. The expression is a string of
JavaScript source code which will be evaluated in the context given by “this”.

Declaration public Object eval(String s)

Method Description

call Calls a JavaScript method

eval Evaluates a JavaScript expression

getMember Retrieves a named member of a JavaScript object

getSlot Retrieves an indexed member of a JavaScript object

removeMember Removes a named member of a JavaScript object

setMember Sets a named member of a JavaScript object

setSlot Sets an indexed member of a JavaScript object

toString Converts a JSObject to a string

Method Description

getWindow Gets a JSObject for the window containing the given applet
Chapter 14, Java packages for LiveConnect 687

netscape.javascript.JSObject
getMember

Method. Retrieves a named member of a JavaScript object. Equivalent to
“this.name ” in JavaScript.

Declaration public Object getMember(String name)

getSlot

Method. Retrieves an indexed member of a JavaScript object. Equivalent to
“this[index] ” in JavaScript.

Declaration public Object getSlot(int index)

getWindow

Static method. Returns a JSObject for the window containing the given applet.
This method is available only on the client.

Declaration public static JSObject getWindow(Applet applet)

removeMember

Method. Removes a named member of a JavaScript object.

Declaration public void removeMember(String name)

setMember

Method. Sets a named member of a JavaScript object. Equivalent to
“this.name = value ” in JavaScript.

Declaration public void setMember(String name,
Object value)

setSlot

Method. Sets an indexed member of a JavaScript object. Equivalent to
“this[index] = value ” in JavaScript.

Declaration public void setSlot(int index,
688 JavaScript Reference

netscape.javascript.JSException
Object value)

toString

Method. Converts a JSObject to a String .

Overrides: toString in class Object

Declaration public String toString()

netscape.javascript.JSException
The public class JSException extends Exception .

java.lang.Object
|
+----java.lang.Throwable

|
+----java.lang.Exception

|
+----netscape.javascript.JSException

JSException is an exception that is thrown when JavaScript code returns an
error.

Constructors
The netscape.javascript.JSException class has the following
constructors:

The following sections show the declaration and usage of these constructors.

Constructor Description

JSException Constructs a JSException. You specify whether the
JSException has a detail message and other information.
Chapter 14, Java packages for LiveConnect 689

netscape.plugin.Plugin
JSException

Constructor. Constructs a JSException . You specify whether the JSException
has a detail message and other information.

Declaration 1. public JSException()

2. public JSException(String s)

3. public JSException(String s,
String filename,
int lineno,
String source,
int tokenIndex)

Arguments

Description A detail message is a string that describes this particular exception.

Each form constructs a JSException with different information:

• Form 1 of the declaration constructs a JSException without a detail
message.

• Form 2 of the declaration constructs a JSException with a detail message.

• Form 3 of the declaration constructs a JSException with a detail message
and all the other information that usually comes with a JavaScript error.

netscape.plugin.Plugin
The public class Plugin extends Object .

java.lang.Object
|
+----netscape.plugin.Plugin

s The detail message.

filename The URL of the file where the error occurred, if possible.

lineno The line number if the file, if possible.

source The string containing the JavaScript code being evaluated.

tokenIndex The index into the source string where the error occurred.
690 JavaScript Reference

netscape.plugin.Plugin
This class represents the Java reflection of a plug-in. Plug-ins that need to have
Java methods associated with them should subclass this class and add new
(possibly native) methods to it. This allows other Java entities (such as applets
and JavaScript code) to manipulate the plug-in.

Constructors and methods

The netscape.plugin.Plugin class has the following constructors:

The netscape.plugin.Plugin class has the following methods:

The following sections show the declaration and usage of these constructors
and methods.

destroy

Method. Called when the plug-in is destroyed. You never need to call this
method directly, it is called when the plug-in is destroyed. At the point this
method is called, the plug-in will still be active.

Declaration public void destroy()

See also init

Constructor Description

Plugin Constructs a Plugin.

Method Description

destroy Called when the plug-in is destroyed

getPeer Returns the native NPP object—the plug-in instance that is the
native part of a Java Plugin object

getWindow Returns the JavaScript window on which the plug-in is
embedded

init Called when the plug-in is initialized

isActive Determines whether the Java reflection of a plug-in still refers
to an active plug-in
Chapter 14, Java packages for LiveConnect 691

netscape.plugin.Plugin
getPeer

Method. Returns the native NPP object—the plug-in instance that is the native
part of a Java Plugin object. This field is set by the system, but can be read
from plug-in native methods by calling:

NPP npp = (NPP)netscape_plugin_Plugin_getPeer(env, thisPlugin);

Declaration public int getPeer()

getWindow

Method. Returns the JavaScript window on which the plug-in is embedded.

Declaration public JSObject getWindow()

init

Method. Called when the plug-in is initialized. You never need to call this
method directly, it is called when the plug-in is created.

Declaration public void init()

See also destroy

isActive

Method. Determines whether the Java reflection of a plug-in still refers to an
active plug-in. Plug-in instances are destroyed whenever the page containing
the plug-in is left, thereby causing the plug-in to no longer be active.

Declaration public boolean isActive()

Plugin

Constructor. Constructs a Plugin .

Declaration public Plugin()
692 JavaScript Reference

netscape.plugin.Plugin
Chapter 14, Java packages for LiveConnect 693

694 JavaScript Reference

Index

Note: This index has not yet been
updated.

Symbols
! operator 66

(hash mark in URL) 255

% operator 62

& operator 63

&& operator 66

*/ comment 78

-- operator 63

++ operator 62

/* comment 78

// comment 78

^ operator 63

| operator 63

|| operator 66

~ operator 63

A
A HTML tag 277

abort event 487

about: (URL syntax) 346, 347

abs method 142

acos method 143

action property 372

addClient function 659

agent property 608

alert method 317

alinkColor property 226

anchor method 175

Anchor object 262

anchors
Anchor object 262
creating 175

animation 266

appCodeName property 463

APPLET HTML tag 276

Applet object 276

applets
including in a web page 276

appName property 463

appVersion property 463

AREA HTML tag 277

Area object 250, 261

arguments array 130

arithmetic operators
decrement 62
increment 62
modulus 62
unary negation 63

Array object 94

arrays
Array object 94
creating from strings 192
dense 95
increasing length of 94
indexing 95
initial length of 94
joining 100
length of, determining 98, 174,

363, 374
referring to elements 95
sorting 106

asin method 144
Index 695

assignment operators 60

atan method 144

atan2 method 145

AUTH_TYPE CGI variable 677

B
back method 318, 365

background color 281

beginTransaction method
of Connection objects 521, 561

bgColor property 228, 281

BIG HTML tag 176

big method 176

binary data, converting to string 632

bitwise operators
logical 64
overview 63
shift 65

BLINK HTML tag 176

blink method 176

blob function 661

Blob objects 601–604
blobImage method 601
blobLink method 603

blobImage method
of Blob objects 601

blobLink method
of Blob objects 603

BOLD HTML tag 177

bold method 177

Boolean object 111

border property 270

break statement 77

browser
about: (URL syntax) 347
code name of 463
name of 463

Button object 409

buttons
Button object 409
clicking programmatically 422, 427,

436
submit 416

bytes, converting to string 632

byteToString method 632

C
C functions

calling 657
registering 658

caching graphics 266

call method (LiveConnect) 687

callC function 662

caller property 133

ceil method 146

CGI programs, and LiveWire xliii

CGI variables
AUTH_TYPE 677
HTTPS 677
HTTPS_KEYSIZE 677
HTTPS_SECRETKEYSIZE 677
PATH_TRANSLATED 677
QUERY_STRING 677
REMOTE_ADDR 677
REMOTE_HOST 677
REMOTE_USER 677
REQUEST_METHOD 677
SCRIPT_NAME 677
SERVER_NAME 678
SERVER_PORT 678
SERVER_PROTOCOL 678
SERVER_URL 678

charAt method 178

Checkbox object 437

checkboxes
Checkbox object 437
clicking programmatically 422, 427,

436
default selection state 432
696 JavaScript Reference

defining 437

clearError method 634

clearInterval method 320

client
preserving properties 659

client JavaScript 49

client object 613
getting identifier 658, 678
maintaining 657
storing properties on project or

server ??–679
uniquely referring to ??–679

close method
document object 241
File object 634
window object 321

closed property 302

colors
background 281

comment statement 78

comments 78

comparison operators 61

complete property 271

confirm method 322

connection method
of DbPool objects 552

Connection objects ??–542, ??–559,
560–577

beginTransaction method 521, 561
scope 543

constructor property 162

containership
specifying default object 90
with statement and 90

continue statement 78

conventions 75

cookie property 229

cos method 147

cosine 147

creating 658, 678

current property 363

cursor method 528, 565

Cursor objects 578–??
deleteRow method 584
insertRow method 585
next method 587, 599
properties 580
See also cursors.
updateRow method 588

D
database object 518

Date object 113

dates
converting to string 126
Date object 113
day of week 116
defining 113
milliseconds since 1970 126
month 118

DbPool objects 542–??
connection method 552
disconnect method 531, 552
storedProcArgs method 540, 557

debug function 663

decrement operator 62

default objects, specifying 90

defaultChecked property 432, 440

defaultSelected property 458

defaultStatus property 303

deleteRow method
of Cursor objects 584

dense arrays 95

destroy method 616

destroy method (LiveConnect) 691

dialog boxes
Confirm 322
Prompt 333

directories
Index 697

conventions used xlv

disconnect method
of DbPool objects 531, 552

DNS 677

document conventions ??–xlvi

document object 222
embeds array 231

documents
color of 281
document object 222
embeds array 231

domain property 230

E
E property 139

elements array 372

embeds array 231

enabledPlugin property 473

encoding property 373

ENCTYPE attribute 373

environment variables
accessing 677

eof method 634

error method 635

errors
status 631, 634

escape function 664

Euler’s constant 139
raised to a power 147

eval method 163, 665

eval method (LiveConnect) 687

event handlers 487–??
defining 481
event object 485
in Function objects 130
specifying object names in 321

event object 485

events

event object 485
handling specific 242, 261, 276,

327, 375, 389, 398, 405, 408,
416, 422, 427, 437, 444, 454

events, defined 481

exists method 636

exp method 147

expiration method 616

expressions
that return no value 73

F
fgColor property 232

File object 629

file: (URL syntax) 346

filename property 477

files
error status 631, 634

FileUpload object 406

find method 324

fixed method 180

floor method 148

flush function 667
described 667

flush method 637

focus
removing 319, 388, 397, 414, 417,

421, 427, 436, 454

focus method 325, 389, 398, 404,
408, 415, 422, 427, 436, 443,
454

fontcolor method 181

fonts
big 176
blinking 176
bold 177

fontsize method 182

for loops
continuation of 78
698 JavaScript Reference

syntax of 82
termination of 77

for statement 82

for...in statement 83

FORM HTML tag 368

Form object 368
elements array 372

form property 379, 384, 394, 401,
408, 410, 418, 426, 433, 441,
449

forms
checkboxes 437
defining 368
element focus 319, 388, 397, 414,

417, 421, 427, 436, 454
element names 307, 374, 386, 395,

441
elements array 372
ENCTYPE attribute 373
Form object 368
and LiveWire xliii
MIME encoding 373
submit buttons 416
submitting 416

Forward button 326

forward method 326, 366

Frame object 344

frames
Frame object 344
top 285, 315

ftp: (URL syntax) 346

Function object 127
specifying arguments for 129
specifying event handler with 130
as variable value 128

function statement 83

functions 142–??
addClient 659
arguments array 130
blob 661
callC 662
caller property 133

calling external 662
debug 663
escape 664
flush 667
Function object 127
isNAN 670
number of arguments 98, 174,

363, 374
parseFloat 615, 671
parseInt 615, 672
redirect 674
registerCFunction 675
return values of 87
unescape 681
as variable value 128
write 683

G
getDate method 116

getDay method 116

getHours method 117

getLength method 637

getMember method
(LiveConnect) 688

getMinutes method 117

getMonth method 118

getOptionValue property 668

getPeer method (LiveConnect) 692

getPosition method 638

getSeconds method 118

getSelection method 242

getSlot method (LiveConnect) 688

getTime method 119

getTimezoneOffset method 119

getWindow method
(LiveConnect) 692

getWindow static method
(LiveConnect) 688

getYear method 120

Go menu 361
Index 699

go method 366

gopher: (URL syntax) 346

H
handleEvent method 242, 261, 276,

327, 375, 389, 398, 405, 408,
416, 422, 427, 437, 444, 454

handling specific events 242, 261,
276, 327, 375, 389, 398, 405,
408, 416, 422, 427, 437, 444,
454

height property 271

Hidden object 378

history list
next URL in 326

history object 361
current property 363
next property 364
previous property 364

home method 327

host property 622

hostname 678

hostname property 256, 351, 622

href property 257, 352

hspace property 272

HTML
generated 247
generating 658
and Livewire xliii

HTML tags
A 277
APPLET 276
AREA 277
BIG 176
BLINK 176
BOLD 177
FORM 368
IMG 602
INPUT 416, 437
MAP 277

HTTP method 677

HTTP protocol level 678

HTTP user 677

http: (URL syntax) 346

HTTPS CGI variable 677

HTTPS_KEYSIZE CGI variable 677

HTTPS_SECRETKEYSIZE CGI
variable 677

I
if...else statement 84

Image object 264

images
and animation 266
Area object 250
border 270
caching 266
preloading 266
size of 265
source 285

imageX property 610

imageY property 610, 611

IMG HTML tag 602

increment operator 62

indexOf method 184

init method (LiveConnect) 692

INPUT HTML tag 416, 437

inputName property 611

insertRow method
of Cursor objects 585

ip property 611

isActive method (LiveConnect) 692

isNaN function 670

italics method 185

J
javaEnabled method 468
700 JavaScript Reference

JavaScript
debugging 657
LiveWire 50–52
Navigator 49–50

javascript: (URL syntax) 346, 347

join method 100

JSException class 689

JSException constructor
(LiveConnect) 690

JSObject class 685

L
lastIndexOf method 186

lastModified property 234

Layer object 277

layers 277

left shift operator 65

link method 187

Link object 250

linkColor property 236

links
anchors for 175
and areas 277
for BLOb data 601, 603, 604
defining 277
and images 277
Link object 250
with no destination 73

lists, selection 444

LiveConnect
packages 685–692

LiveWire
background for using xliii

LN10 property 139

LN2 property 140

load event 503

location object 344

location property 239

log method 149

LOG10E property 140

LOG2E property 141

logarithms
base of natural 139, 147
natural logarithm of 10 139

logical operators
overview 66
short-circuit evaluation 67

loops
continuation of 78
for 82
termination of 77
while 89

lowercase 173, 200

lowsrc property 272

M
mailto: (URL syntax) 346

MAP HTML tag 277

Math object 137

max method 149

MAX_VALUE property 156

MAYSCRIPT attribute 277

messages
Confirm dialog box 322
Prompt dialog box 333

method property 374, 612

methods 142–??

MIME encoding 373

MIME types
configured plug-in for 473
plug-ins supported 475

MimeType object 470

min method 150

MIN_VALUE property 157

modulo function 62

modulus operator 62
Index 701

mouseout event 508

mouseOver event 509

moveBy method 327

moveTo method 289, 328

multimedia
and blobLink 604

N
name property 273, 284, 307, 374,

380, 386, 395, 402, 408, 412,
419, 426, 433, 441, 450, 478

NaN property 158

natural logarithms
base of 139
e 139
e raised to a power 147
of 10 139

Navigator
about: (URL syntax) 347
code name of 463
and JavaScript 49, 50
name of 463

navigator object 461

NEGATIVE_INFINITY property 158

netscape.javascript.JSException
class 689

netscape.javascript.JSObject class 685

netscape.javascript.Plugin class 690

new operator 69

news: (URL syntax) 346

next method
of Cursor objects 587, 599
of ResultSet objects 587, 599

next property 364

Number object 155

numbers
cosine of 147
greater of two 149
identifying 658
Number object 155

obtaining integer 146
parsing from strings 671
square root 153

O
Objects

Blob 601

objects 142–??
creating new types 69
establishing default 90
focus 319, 388, 397, 414, 417, 421,

427, 436, 454
specifying names in event

handlers 321

onAbort event handler 487

onLoad event handler 503

onMouseOut event handler 508

onMouseOver event handler 509

onReset event handler 512

onSelect event handler 513

onSubmit event handler 514

onUnload event handler 515

open method 640
document object 243
window object 329

opener property 308

operators
arithmetic 62–63
assignment 60
bitwise 63–65
comparison 61
logical 66
special 68
string 67

outParamCount method
of StoredProc objects 592

outParameters method
of StoredProc objects 592, 595

output buffer
flushing 657
702 JavaScript Reference

P
packages 685–692

parent property 311

parse method 120

parseFloat function 615, 671

parseInt function 615, 672

Password object 399
default value 384, 393, 401

PATH_INFO CGI variable 677

PATH_TRANSLATED CGI
variable 677

pathname property 257, 353

PI property 141

Plugin class 690

Plugin constructor (LiveConnect) 692

Plugin object 474

plug-ins
defined 475
determining installed 475

port property 258, 354, 623

POSITIVE_INFINITY property 159

pow method 151

previous property 364

printing generated HTML 247

project object 617

prompt method 333

Properties
of Cursor objects 580

properties 142–??
preserving client values 659

protocol property 259, 355
request object 613
server object 623

prototype property 99, 112, 115, 160,
163, 175, 273, 521, 544, 561,
582, 591, 597, 632, 654

Q
QUERY_STRING CGI variable 677

R
radio buttons

clicking programmatically 422, 427,
436

default selection state 432
Radio object 428

Radio object 428

random method 151

read method 641

readByte method 642

readln method 643

redirect function 674

referrer property 238

refresh method 467

registerCFunction function 675

reload method 358

REMOTE_ADDR CGI variable 677

REMOTE_HOST CGI variable 677

REMOTE_USER CGI variable 677

removeMember method
(LiveConnect) 688

replace method 359

request
changing 658

request object 606

REQUEST_METHOD CGI
variable 677

reset buttons
clicking programmatically 422, 427,

436
Reset object 423

reset event 512

reset method 376

Reset object 423
Index 703

resizeBy method 335

resizeTo method 335

response headers
manipulating 657, 660

ResultSet objects 594–??
next method 587, 599

return statement 87

returnValue method
of StoredProc objects 593, 595

reverse method 102

right shift operators 65

round method 152

S
scope

of connection objects 543

SCRIPT_NAME CGI variable 677

scroll method 337

scrollBy method 337

scrollTo method 338

search property 259, 357

security
closing windows 321

select event 513

Select object 444

SELECT tag 658

selectedIndex property 452

selection lists
adding options 456
changing option text 456
default selection state 458
deleting options 451
number of options 98, 174, 363,

374
option text 459
Select object 444

self property 313

server
global data for 620

server JavaScript 50

server object 620

SERVER_NAME CGI variable 678

SERVER_PORT CGI variable 678

SERVER_PROTOCOL CGI
variable 678

SERVER_URL CGI variable 678

session key 677

setDate method 121

setHours method 122

setMember method
(LiveConnect) 688

setMinutes method 122

setMonth method 123

setPosition method 644

setSeconds method 123

setSlot method (LiveConnect) 688

setTime method 124

setTimeout method 341

setYear method 124

sin method 153

small method 192

sort method 106

special operators 68
typeof 72
void 73

split method 192

SQL xliii

sqrt method 153

SQRT1_2 property 141

SQRT2 property 142

square roots 153

src property 274, 285

ssjs_getCGIVariable function 677

ssjs_getClientID function 678

statements 75–91
syntax conventions 75
704 JavaScript Reference

status property 313

stop method 343

StoredProc objects ??–594
outParamCount method 592
outParameters method 592, 595
returnValue method 593, 595

storedProcArgs method
of DbPool objects 540, 557

strike method 195

String object 171

string operators 67

strings
blinking 176
bold 177
character position within 172, 178,

184
converting from bytes 632
converting from date 126
converting to floating point 671
creating from arrays 100
defining 171
fontsize of 176
length of 98, 174, 363, 374
lowercase 173, 200
parsing 658
splitting into arrays 192
String object 171

stringToByte method 646

sub method 196

submit buttons
clicking programmatically 422, 427,

436
defining 416
Submit object 416

submit event 514

submit method 377

Submit object 416

substring method 198

suffixes property 474

sup method 200

syntax conventions 75

T
tan method 154

target property 260, 375

TCP port 678

Text object 382
default value 384, 393, 401

Textarea object 390
default value 384, 393, 401

this keyword 72

this.form 379, 384, 394, 401, 408,
410, 418, 426, 433, 441, 449

timeouts
canceling 320

times
Date object 113
defining 113
minutes 117

title property 239

toGMTString method 125

toLocaleString method 126

toLowerCase method 200

top property 285, 315

toString method 109, 112, 136, 160,
165, 541, 558, 577

built-in 165
user-defined 166

toString method (LiveConnect) 689

toUpperCase method 201

Trace facility 663

transactions
committing 526, 547
overview 520
rolling back 526, 547
scope of 521, 522, 523, 537, 562,

563, 574

trigonometric methods
cos 147

typeof operator 72
Index 705

U
unary negation 63

unescape function 681

unique identifier 658, 678

unload event 515

updateRow method
of Cursor objects 588

URL
redirecting to 658

URLs 678
adding information to 657
anchor name in 255
conventions used xlv
current 344
escaping characters in 657
examples of common 346
history list 361
next 326
syntax of 346

user interaction
applets 276
area objects 277
checkboxes 437
Confirm dialog box 322
image objects 277
link objects 277
Prompt dialog box 333
submit buttons 416

userAgent property 467

UTC method 126

V
valueOf method 168

var statement 88

variables
declaring 88
initializing 88
syntax for declaring 88

view-source: (URL syntax) 346

vlinkColor property 240

void function 251, 347

void operator 73

vspace property 275

W
while loops

continuation of 78
syntax of 89
termination of 77

while statement 89

width property 275

window object 294

windows
closed 302
closing 321
name of 307, 374, 386, 395, 441
top 285, 315
window object 294

with statement 90

write function 683
and flush 667

write method 246
generated HTML 247

writeByte method 648

writeln method 249, 648
706 JavaScript Reference

	JavaScript Reference
	What’s in this Reference
	Getting Started
	What You Should Already Know
	Where to Find JavaScript Information
	Document Conventions

	Introduction
	Client-Side JavaScript
	Server-Side JavaScript
	JavaScript Objects
	Security

	Operators
	Assignment Operators
	Comparison Operators
	Arithmetic Operators
	% (Modulus)
	++ (Increment)
	-- (Decrement)
	- (Unary Negation)

	Bitwise Operators
	Bitwise Logical Operators
	Bitwise Shift Operators

	Logical Operators
	Short-Circuit Evaluation

	String Operators
	Special Operators
	?: (Conditional operator)
	, (Comma operator)
	delete
	new
	this
	typeof
	void

	Statements
	break
	comment
	continue
	delete
	do...while
	export
	for
	for...in
	function
	if...else
	import
	labeled
	return
	switch
	var
	while
	with

	Core
	Array
	Properties
	index
	input
	length
	prototype
	Methods
	concat
	join
	pop
	push
	reverse
	shift
	slice
	splice
	sort
	toString
	unshift

	Boolean
	Properties
	prototype
	Methods
	toString

	Date
	Properties
	prototype
	Methods
	getDate
	getDay
	getHours
	getMinutes
	getMonth
	getSeconds
	getTime
	getTimezoneOffset
	getYear
	parse
	setDate
	setHours
	setMinutes
	setMonth
	setSeconds
	setTime
	setYear
	toGMTString
	toLocaleString
	UTC

	Function
	Properties
	arguments
	arity
	caller
	prototype
	Methods
	toString

	Math
	Properties
	E
	LN10
	LN2
	LOG10E
	LOG2E
	PI
	SQRT1_2
	SQRT2
	Methods
	abs
	acos
	asin
	atan
	atan2
	ceil
	cos
	exp
	floor
	log
	max
	min
	pow
	random
	round
	sin
	sqrt
	tan

	Number
	Properties
	MAX_VALUE
	MIN_VALUE
	NaN
	NEGATIVE_INFINITY
	POSITIVE_INFINITY
	prototype
	Methods
	toString

	Object
	Properties
	constructor
	prototype
	Methods
	eval
	toString
	unwatch
	valueOf
	watch

	String
	Properties
	length
	prototype
	Methods
	anchor
	big
	blink
	bold
	charAt
	charCodeAt
	concat
	fixed
	fontcolor
	fontsize
	fromCharCode
	indexOf
	italics
	lastIndexOf
	link
	match
	replace
	search
	slice
	small
	split
	strike
	sub
	substr
	substring
	sup
	toLowerCase
	toUpperCase

	RegExp
	Properties
	$1, ..., $9
	$_
	$*
	$&
	$+
	$‘
	$’
	global
	ignoreCase
	input
	lastIndex
	lastMatch
	lastParen
	leftContext
	multiline
	rightContext
	source
	Methods
	compile
	exec
	test

	Document
	document
	Properties
	alinkColor
	anchors
	applets
	bgColor
	cookie
	domain
	embeds
	fgColor
	formName
	forms
	images
	lastModified
	layers
	linkColor
	links
	plugins
	referrer
	title
	URL
	vlinkColor
	Methods
	captureEvents
	close
	getSelection
	handleEvent
	open
	releaseEvents
	routeEvent
	write
	writeln

	Link
	Properties
	hash
	host
	hostname
	href
	pathname
	port
	protocol
	search
	target
	text
	Methods
	handleEvent

	Area
	resizeTo
	routeEvent
	resizeTo
	routeEvent

	Anchor
	Image
	Properties
	border
	complete
	height
	hspace
	lowsrc
	name
	prototype
	src
	vspace
	width
	Methods
	handleEvent

	Applet
	Layer
	Properties
	above
	background
	bgColor
	below
	clip.bottom
	clip.height
	clip.left
	clip.right
	clip.top
	clip.width
	document
	left
	name
	pageX
	pageY
	parentLayer
	siblingAbove
	siblingBelow
	src
	top
	visibility
	zIndex
	Methods
	captureEvents
	handleEvent
	load
	moveAbove
	moveBelow
	moveBy
	moveTo
	moveToAbsolute
	releaseEvents
	resizeBy
	resizeTo
	routeEvent

	Window
	Window
	Properties
	closed
	defaultStatus
	document
	frames
	history
	innerHeight
	innerWidth
	length
	location
	locationbar
	menubar
	name
	opener
	outerHeight
	outerWidth
	pageXOffset
	pageYOffset
	parent
	personalbar
	scrollbars
	self
	status
	statusbar
	toolbar
	top
	window
	Methods
	alert
	back
	blur
	captureEvents
	clearInterval
	clearTimeout
	close
	confirm
	disableExternalCapture
	enableExternalCapture
	find
	focus
	forward
	handleEvent
	home
	moveBy
	moveTo
	open
	print
	prompt
	releaseEvents
	resizeBy
	resizeTo
	routeEvent
	scroll
	scrollBy
	scrollTo
	setInterval
	setTimeout
	stop

	Frame
	Location
	Properties
	hash
	host
	hostname
	href
	pathname
	port
	protocol
	search
	Methods
	reload
	replace

	History
	Properties
	current
	length
	next
	previous
	Methods
	back
	forward
	go

	screen
	Properties
	availHeight
	availWidth
	colorDepth
	height
	pixelDepth
	width

	Form
	Form
	Properties
	action
	elements
	encoding
	length
	method
	name
	target
	Methods
	handleEvent
	reset
	submit

	Hidden
	Properties
	form
	name
	type
	value

	Text
	Properties
	defaultValue
	form
	name
	type
	value
	Methods
	blur
	focus
	handleEvent
	select

	Textarea
	Properties
	defaultValue
	form
	name
	type
	value
	Methods
	blur
	focus
	handleEvent
	select

	Password
	Properties
	defaultValue
	form
	name
	type
	value
	Methods
	blur
	focus
	handleEvent
	select

	FileUpload
	Properties
	form
	name
	type
	value
	Methods
	blur
	focus
	handleEven t
	select

	Button
	Properties
	form
	name
	type
	value
	Methods
	blur
	click
	focus
	handleEvent

	Submit
	Properties
	form
	name
	type
	value
	Methods
	blur
	click
	focus
	handleEvent

	Reset
	Properties
	form
	name
	type
	value
	Methods
	blur
	click
	focus
	handleEvent

	Radio
	Properties
	checked
	defaultChecked
	form
	name
	type
	value
	Methods
	blur
	click
	focus
	handleEvent

	Checkbox
	Properties
	checked
	defaultChecked
	form
	name
	type
	value
	Methods
	blur
	click
	focus
	handleEvent

	Select
	Properties
	form
	length
	name
	options
	selectedIndex
	type
	Methods
	blur
	focus
	handleEvent

	Option
	Properties
	defaultSelected
	selected
	text
	value

	Browser
	navigator
	Properties
	appCodeName
	appName
	appVersion
	language
	mimeTypes
	platform
	plugins
	userAgent
	Methods
	javaEnabled
	preference
	taintEnabled

	MimeType
	Properties
	description
	enabledPlugin
	suffixes
	type

	Plugin
	Properties
	description
	filename
	length
	name

	Events and Event Handlers
	General Information about Events
	Defining Event Handlers
	Events in Navigator�4.0

	event
	onAbort
	onBlur
	onChange
	onClick
	onDblClick
	onDragDrop
	onError
	onFocus
	onKeyDown
	onKeyPress
	onKeyUp
	onLoad
	onMouseDown
	onMouseMove
	onMouseOut
	onMouseOver
	onMouseUp
	onMove
	onReset
	onResize
	onSelect
	onSubmit
	onUnload

	LiveWire Database Service
	database
	Transactions
	Properties
	prototype
	Methods
	beginTransaction
	commitTransaction
	connect
	connected
	cursor
	disconnect
	execute
	majorErrorCode
	majorErrorMessage
	minorErrorCode
	minorErrorMessage
	rollbackTransaction
	SQLTable
	storedProc
	storedProcArgs
	toString

	DbPool
	Properties
	prototype
	Methods
	DbPool
	connect
	connected
	connection
	disconnect
	majorErrorCode
	majorErrorMessage
	minorErrorCode
	minorErrorMessage
	storedProcArgs
	toString

	Connection
	Properties
	prototype
	Methods
	beginTransaction
	commitTransaction
	connected
	cursor
	execute
	majorErrorCode
	majorErrorMessage
	minorErrorCode
	minorErrorMessage
	release
	rollbackTransaction
	SQLTable
	storedProc
	toString

	Cursor
	Properties
	cursorColumn
	prototype
	Methods
	close
	columnName
	columns
	deleteRow
	insertRow
	next
	updateRow

	Stproc
	Properties
	prototype
	Methods
	close
	outParamCount
	outParameters
	resultSet
	returnValue

	Resultset
	Properties
	prototype
	Methods
	close
	columnName
	columns
	next

	blob
	Methods
	blobImage
	blobLink

	Session Management Service
	request
	Properties
	agent
	imageX
	imageY
	inputName
	ip
	method
	protocol

	client
	Properties
	Methods
	destroy
	expiration

	project
	Properties
	Methods
	lock
	unlock

	server
	Properties
	host
	hostname
	port
	protocol
	Methods
	lock
	unlock

	Lock
	Methods
	lock
	isValid
	unlock

	Utilities
	File
	Properties
	prototype
	Methods
	byteToString
	clearError
	close
	eof
	error
	exists
	flush
	getLength
	getPosition
	open
	read
	readByte
	readln
	setPosition
	stringToByte
	write
	writeByte
	writeln

	SendMail
	Properties
	Bcc
	Body
	Cc
	Errorsto
	From
	Organization
	prototype
	Replyto
	Smtpserver
	Subject
	To
	Methods
	errorCode
	errorMessage
	send

	Global Functions
	addClient
	addResponseHeader
	blob
	callC
	debug
	deleteResponseHeader
	escape
	eval
	flush
	getOptionValue
	getOptionValueCount
	isNaN
	Number
	parseFloat
	parseInt
	redirect
	registerCFunction
	ssjs_generateClientID
	ssjs_getCGIVariable
	ssjs_getClientID
	String
	taint
	unescape
	untaint
	write

	Java packages for LiveConnect
	netscape.javascript.JSObject
	Methods and static methods
	call
	eval
	getMember
	getSlot
	getWindow
	removeMember
	setMember
	setSlot
	toString

	netscape.javascript.JSException
	Constructors
	JSException

	netscape.plugin.Plugin
	Constructors and methods
	destroy
	getPeer
	getWindow
	init
	isActive
	Plugin

